ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.07434
  4. Cited By
Self-Supervised Implicit Attention: Guided Attention by The Model Itself
v1v2 (latest)

Self-Supervised Implicit Attention: Guided Attention by The Model Itself

15 June 2022
Jinyi Wu
Xun Gong
Zhemin Zhang
ArXiv (abs)PDFHTML

Papers citing "Self-Supervised Implicit Attention: Guided Attention by The Model Itself"

39 / 39 papers shown
Title
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
Jure Zbontar
Li Jing
Ishan Misra
Yann LeCun
Stéphane Deny
SSL
347
2,362
0
04 Mar 2021
RepVGG: Making VGG-style ConvNets Great Again
RepVGG: Making VGG-style ConvNets Great Again
Xiaohan Ding
Xinming Zhang
Ningning Ma
Jungong Han
Guiguang Ding
Jian Sun
286
1,602
0
11 Jan 2021
Exploring Simple Siamese Representation Learning
Exploring Simple Siamese Representation Learning
Xinlei Chen
Kaiming He
SSL
258
4,072
0
20 Nov 2020
Deep Reinforced Attention Learning for Quality-Aware Visual Recognition
Duo Li
Qifeng Chen
59
6
0
13 Jul 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
395
6,837
0
13 Jun 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
541
42,591
0
03 Dec 2019
ECA-Net: Efficient Channel Attention for Deep Convolutional Neural
  Networks
ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks
Qilong Wang
Banggu Wu
Peng Fei Zhu
P. Li
W. Zuo
Q. Hu
143
4,031
0
08 Oct 2019
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
Yue Cao
Jiarui Xu
Stephen Lin
Fangyun Wei
Han Hu
ISeg
86
1,573
0
25 Apr 2019
Attention Branch Network: Learning of Attention Mechanism for Visual
  Explanation
Attention Branch Network: Learning of Attention Mechanism for Visual Explanation
Hiroshi Fukui
Tsubasa Hirakawa
Takayoshi Yamashita
H. Fujiyoshi
XAIFAtt
70
409
0
25 Dec 2018
Bag of Tricks for Image Classification with Convolutional Neural
  Networks
Bag of Tricks for Image Classification with Convolutional Neural Networks
Tong He
Zhi-Li Zhang
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
293
1,421
0
04 Dec 2018
Gather-Excite: Exploiting Feature Context in Convolutional Neural
  Networks
Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Andrea Vedaldi
73
576
0
29 Oct 2018
$A^2$-Nets: Double Attention Networks
A2A^2A2-Nets: Double Attention Networks
Yunpeng Chen
Yannis Kalantidis
Jianshu Li
Shuicheng Yan
Jiashi Feng
77
532
0
27 Oct 2018
CBAM: Convolutional Block Attention Module
CBAM: Convolutional Block Attention Module
Sanghyun Woo
Jongchan Park
Joon-Young Lee
In So Kweon
227
16,598
0
17 Jul 2018
Unsupervised Representation Learning by Predicting Image Rotations
Unsupervised Representation Learning by Predicting Image Rotations
Spyros Gidaris
Praveer Singh
N. Komodakis
OODSSLDRL
264
3,298
0
21 Mar 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
204
19,333
0
13 Jan 2018
Non-local Neural Networks
Non-local Neural Networks
Xinyu Wang
Ross B. Girshick
Abhinav Gupta
Kaiming He
OffRL
300
8,917
0
21 Nov 2017
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
427
26,557
0
05 Sep 2017
Representation Learning by Learning to Count
Representation Learning by Learning to Count
M. Noroozi
Hamed Pirsiavash
Paolo Favaro
SSL
76
369
0
22 Aug 2017
ShuffleNet: An Extremely Efficient Convolutional Neural Network for
  Mobile Devices
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
Xiangyu Zhang
Xinyu Zhou
Mengxiao Lin
Jian Sun
AI4TS
147
6,884
0
04 Jul 2017
Residual Attention Network for Image Classification
Residual Attention Network for Image Classification
Fei Wang
Mengqing Jiang
Chao Qian
Shuo Yang
Cheng Li
Honggang Zhang
Xiaogang Wang
Xiaoou Tang
115
3,313
0
23 Apr 2017
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
522
10,347
0
16 Nov 2016
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDEBDLPINN
1.4K
14,608
0
07 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
790
36,881
0
25 Aug 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
375
7,333
0
13 Jun 2016
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
  Atrous Convolution, and Fully Connected CRFs
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
267
18,267
0
02 Jun 2016
Asynchrony begets Momentum, with an Application to Deep Learning
Asynchrony begets Momentum, with an Application to Deep Learning
Jeff Donahue
Philipp Krahenbuhl
Stefan Hadjis
Christopher Ré
92
142
0
31 May 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
353
8,000
0
23 May 2016
Unsupervised Learning of Visual Representations by Solving Jigsaw
  Puzzles
Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles
M. Noroozi
Paolo Favaro
SSL
177
2,985
0
30 Mar 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSLSSegFAtt
253
9,338
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DVBDL
886
27,416
0
02 Dec 2015
Understanding Neural Networks Through Deep Visualization
Understanding Neural Networks Through Deep Visualization
J. Yosinski
Jeff Clune
Anh Totti Nguyen
Thomas J. Fuchs
Hod Lipson
FAttAI4CE
124
1,874
0
22 Jun 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
338
18,651
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,508
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLMObjD
1.7K
39,595
0
01 Sep 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
424
43,814
0
01 May 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
595
15,902
0
12 Nov 2013
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
163
6,632
0
22 Dec 2012
1