ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.05421
  4. Cited By
Greedy Relaxations of the Sparsest Permutation Algorithm

Greedy Relaxations of the Sparsest Permutation Algorithm

11 June 2022
Wai-yin Lam
Bryan Andrews
Joseph Ramsey
ArXivPDFHTML

Papers citing "Greedy Relaxations of the Sparsest Permutation Algorithm"

30 / 30 papers shown
Title
Generative Framework for Personalized Persuasion: Inferring Causal, Counterfactual, and Latent Knowledge
Generative Framework for Personalized Persuasion: Inferring Causal, Counterfactual, and Latent Knowledge
Donghuo Zeng
Roberto Legaspi
Yuewen Sun
Xinshuai Dong
Kazushi Ikeda
Peter Spirtes
Kun Zhang
CML
21
0
0
08 Apr 2025
Causal Discovery and Counterfactual Reasoning to Optimize Persuasive Dialogue Policies
Causal Discovery and Counterfactual Reasoning to Optimize Persuasive Dialogue Policies
Donghuo Zeng
Roberto Legaspi
Yuewen Sun
Xinshuai Dong
Kazushi Ikeda
Peter Spirtes
Kun Zhang
CML
54
1
0
19 Mar 2025
QWO: Speeding Up Permutation-Based Causal Discovery in LiGAMs
QWO: Speeding Up Permutation-Based Causal Discovery in LiGAMs
Mohammad Shahverdikondori
Ehsan Mokhtarian
Negar Kiyavash
CML
26
0
0
30 Oct 2024
Markov Equivalence and Consistency in Differentiable Structure Learning
Markov Equivalence and Consistency in Differentiable Structure Learning
Chang Deng
Kevin Bello
Pradeep Ravikumar
Bryon Aragam
CML
26
0
0
08 Oct 2024
Choosing DAG Models Using Markov and Minimal Edge Count in the Absence
  of Ground Truth
Choosing DAG Models Using Markov and Minimal Edge Count in the Absence of Ground Truth
Joseph Ramsey
Bryan Andrews
Peter Spirtes
CML
24
2
0
30 Sep 2024
Greedy equivalence search for nonparametric graphical models
Greedy equivalence search for nonparametric graphical models
Bryon Aragam
CML
22
1
0
25 Jun 2024
Causal Discovery with Fewer Conditional Independence Tests
Causal Discovery with Fewer Conditional Independence Tests
Kirankumar Shiragur
Jiaqi Zhang
Caroline Uhler
CML
25
1
0
03 Jun 2024
Better Simulations for Validating Causal Discovery with the
  DAG-Adaptation of the Onion Method
Better Simulations for Validating Causal Discovery with the DAG-Adaptation of the Onion Method
Bryan Andrews
Erich Kummerfeld
CML
43
4
0
21 May 2024
Hyperplane Representations of Interventional Characteristic Imset
  Polytopes
Hyperplane Representations of Interventional Characteristic Imset Polytopes
Benjamin Hollering
Joseph Johnson
Liam Solus
21
0
0
29 Apr 2024
Recursive Causal Discovery
Recursive Causal Discovery
Ehsan Mokhtarian
Sepehr Elahi
S. Akbari
Negar Kiyavash
CML
30
0
0
14 Mar 2024
Membership Testing in Markov Equivalence Classes via Independence Query
  Oracles
Membership Testing in Markov Equivalence Classes via Independence Query Oracles
Jiaqi Zhang
Kirankumar Shiragur
Caroline Uhler
CML
51
0
0
09 Mar 2024
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Christian Toth
Christian Knoll
Franz Pernkopf
Robert Peharz
CML
43
1
0
22 Feb 2024
Optimal estimation of Gaussian (poly)trees
Optimal estimation of Gaussian (poly)trees
Yuhao Wang
Ming Gao
Wai Ming Tai
Bryon Aragam
Arnab Bhattacharyya
TPM
16
1
0
09 Feb 2024
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Menghua Wu
Yujia Bao
Regina Barzilay
Tommi Jaakkola
CML
41
7
0
02 Feb 2024
Causal Discovery for fMRI data: Challenges, Solutions, and a Case Study
Causal Discovery for fMRI data: Challenges, Solutions, and a Case Study
E. Rawls
Bryan Andrews
Kelvin Lim
Erich Kummerfeld
CML
26
1
0
20 Dec 2023
Distributionally Robust Skeleton Learning of Discrete Bayesian Networks
Distributionally Robust Skeleton Learning of Discrete Bayesian Networks
Yeshu Li
Brian D. Ziebart
OOD
19
0
0
10 Nov 2023
Fast Scalable and Accurate Discovery of DAGs Using the Best Order Score
  Search and Grow-Shrink Trees
Fast Scalable and Accurate Discovery of DAGs Using the Best Order Score Search and Grow-Shrink Trees
Bryan Andrews
Joseph Ramsey
Ruben Sanchez-Romero
Jazmin Camchong
Erich Kummerfeld
CML
18
16
0
26 Oct 2023
Order-based Structure Learning with Normalizing Flows
Order-based Structure Learning with Normalizing Flows
Hamidreza Kamkari
Vahid Balazadeh Meresht
Vahid Zehtab
Rahul G. Krishnan
CML
23
1
0
14 Aug 2023
Py-Tetrad and RPy-Tetrad: A New Python Interface with R Support for
  Tetrad Causal Search
Py-Tetrad and RPy-Tetrad: A New Python Interface with R Support for Tetrad Causal Search
Joseph Ramsey
Bryan Andrews
KELM
CML
11
6
0
13 Aug 2023
Causal-learn: Causal Discovery in Python
Causal-learn: Causal Discovery in Python
Yujia Zheng
Biwei Huang
Wei Chen
Joseph Ramsey
Mingming Gong
Ruichu Cai
Shohei Shimizu
Peter Spirtes
Kun Zhang
CML
21
64
0
31 Jul 2023
Self-Compatibility: Evaluating Causal Discovery without Ground Truth
Self-Compatibility: Evaluating Causal Discovery without Ground Truth
P. M. Faller
L. C. Vankadara
Atalanti A. Mastakouri
Francesco Locatello
Dominik Janzing Karlsruhe Institute of Technology
CML
11
14
0
18 Jul 2023
Causal Structure Learning by Using Intersection of Markov Blankets
Causal Structure Learning by Using Intersection of Markov Blankets
Yiran Dong
Chuanhou Gao
CML
15
0
0
01 Jul 2023
Causal Razors
Causal Razors
Wai-yin Lam
CML
16
0
0
20 Feb 2023
CDANs: Temporal Causal Discovery from Autocorrelated and Non-Stationary
  Time Series Data
CDANs: Temporal Causal Discovery from Autocorrelated and Non-Stationary Time Series Data
Muhammad Hasan Ferdous
Uzma Hasan
Md. Osman Gani
CML
25
3
0
07 Feb 2023
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and
  Variational Bayes
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes
Mizu Nishikawa-Toomey
T. Deleu
Jithendaraa Subramanian
Yoshua Bengio
Laurent Charlin
BDL
CML
26
29
0
04 Nov 2022
Diffusion Models for Causal Discovery via Topological Ordering
Diffusion Models for Causal Discovery via Topological Ordering
Pedro Sanchez
Xiao Liu
Alison Q. OÑeil
Sotirios A. Tsaftaris
DiffM
86
47
0
12 Oct 2022
Bivariate Causal Discovery for Categorical Data via Classification with
  Optimal Label Permutation
Bivariate Causal Discovery for Categorical Data via Classification with Optimal Label Permutation
Yang Ni
CML
18
5
0
18 Sep 2022
ML4C: Seeing Causality Through Latent Vicinity
ML4C: Seeing Causality Through Latent Vicinity
Haoyue Dai
Rui Ding
Yuanyuan Jiang
Shi Han
Dongmei Zhang
OOD
29
13
0
01 Oct 2021
Benchpress: A Scalable and Versatile Workflow for Benchmarking Structure
  Learning Algorithms
Benchpress: A Scalable and Versatile Workflow for Benchmarking Structure Learning Algorithms
Felix L. Rios
G. Moffa
Jack Kuipers
CML
27
12
0
08 Jul 2021
A Transformational Characterization of Equivalent Bayesian Network
  Structures
A Transformational Characterization of Equivalent Bayesian Network Structures
D. M. Chickering
151
416
0
20 Feb 2013
1