Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.01399
Cited By
Generalization for multiclass classification with overparameterized linear models
3 June 2022
Vignesh Subramanian
Rahul Arya
A. Sahai
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Generalization for multiclass classification with overparameterized linear models"
45 / 45 papers shown
Title
Provable Weak-to-Strong Generalization via Benign Overfitting
David X. Wu
A. Sahai
137
10
0
06 Oct 2024
Precise Asymptotic Generalization for Multiclass Classification with Overparameterized Linear Models
David X. Wu
A. Sahai
72
3
0
23 Jun 2023
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
88
72
0
06 Sep 2021
Benign Overfitting in Multiclass Classification: All Roads Lead to Interpolation
Ke Wang
Vidya Muthukumar
Christos Thrampoulidis
64
49
0
21 Jun 2021
Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation
M. Belkin
53
186
0
29 May 2021
Deep learning: a statistical viewpoint
Peter L. Bartlett
Andrea Montanari
Alexander Rakhlin
70
278
0
16 Mar 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
90
96
0
02 Mar 2021
Theoretical Insights Into Multiclass Classification: A High-dimensional Asymptotic View
Christos Thrampoulidis
Samet Oymak
Mahdi Soltanolkotabi
65
43
0
16 Nov 2020
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
120
688
0
06 Nov 2020
Benign overfitting in ridge regression
Alexander Tsigler
Peter L. Bartlett
75
167
0
29 Sep 2020
On the proliferation of support vectors in high dimensions
Daniel J. Hsu
Vidya Muthukumar
Ji Xu
74
45
0
22 Sep 2020
Fundamental Limits of Ridge-Regularized Empirical Risk Minimization in High Dimensions
Hossein Taheri
Ramtin Pedarsani
Christos Thrampoulidis
66
28
0
16 Jun 2020
Evaluation of Neural Architectures Trained with Square Loss vs Cross-Entropy in Classification Tasks
Like Hui
M. Belkin
UQCV
AAML
VLM
48
172
0
12 Jun 2020
Asymptotics of Ridge (less) Regression under General Source Condition
Dominic Richards
Jaouad Mourtada
Lorenzo Rosasco
73
73
0
11 Jun 2020
On the Optimal Weighted
ℓ
2
\ell_2
ℓ
2
Regularization in Overparameterized Linear Regression
Denny Wu
Ji Xu
72
123
0
10 Jun 2020
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
94
151
0
16 May 2020
Finite-sample Analysis of Interpolating Linear Classifiers in the Overparameterized Regime
Niladri S. Chatterji
Philip M. Long
54
109
0
25 Apr 2020
Sharp Asymptotics and Optimal Performance for Inference in Binary Models
Hossein Taheri
Ramtin Pedarsani
Christos Thrampoulidis
69
25
0
17 Feb 2020
Analytic Study of Double Descent in Binary Classification: The Impact of Loss
Ganesh Ramachandra Kini
Christos Thrampoulidis
66
52
0
30 Jan 2020
More Data Can Hurt for Linear Regression: Sample-wise Double Descent
Preetum Nakkiran
56
68
0
16 Dec 2019
A Model of Double Descent for High-dimensional Binary Linear Classification
Zeyu Deng
A. Kammoun
Christos Thrampoulidis
85
148
0
13 Nov 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
101
639
0
14 Aug 2019
Sampled Softmax with Random Fourier Features
A. S. Rawat
Jiecao Chen
Felix X. Yu
A. Suresh
Sanjiv Kumar
75
55
0
24 Jul 2019
Benign Overfitting in Linear Regression
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
88
778
0
26 Jun 2019
The Impact of Regularization on High-dimensional Logistic Regression
Fariborz Salehi
Ehsan Abbasi
B. Hassibi
104
103
0
10 Jun 2019
Understanding overfitting peaks in generalization error: Analytical risk curves for
l
2
l_2
l
2
and
l
1
l_1
l
1
penalized interpolation
P. Mitra
68
50
0
09 Jun 2019
A New Look at an Old Problem: A Universal Learning Approach to Linear Regression
Koby Bibas
Yaniv Fogel
M. Feder
41
34
0
12 May 2019
Harmless interpolation of noisy data in regression
Vidya Muthukumar
Kailas Vodrahalli
Vignesh Subramanian
A. Sahai
84
202
0
21 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
212
746
0
19 Mar 2019
Two models of double descent for weak features
M. Belkin
Daniel J. Hsu
Ji Xu
106
375
0
18 Mar 2019
Visualising Basins of Attraction for the Cross-Entropy and the Squared Error Neural Network Loss Functions
Anna Sergeevna Bosman
A. Engelbrecht
Mardé Helbig
59
77
0
08 Jan 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
244
1,655
0
28 Dec 2018
The jamming transition as a paradigm to understand the loss landscape of deep neural networks
Mario Geiger
S. Spigler
Stéphane dÁscoli
Levent Sagun
Marco Baity-Jesi
Giulio Biroli
Matthieu Wyart
51
143
0
25 Sep 2018
Optimal ridge penalty for real-world high-dimensional data can be zero or negative due to the implicit ridge regularization
D. Kobak
Jonathan Lomond
Benoit Sanchez
60
89
0
28 May 2018
Convergence of Gradient Descent on Separable Data
Mor Shpigel Nacson
Jason D. Lee
Suriya Gunasekar
Pedro H. P. Savarese
Nathan Srebro
Daniel Soudry
76
169
0
05 Mar 2018
Characterizing Implicit Bias in Terms of Optimization Geometry
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
AI4CE
73
411
0
22 Feb 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
72
420
0
05 Feb 2018
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
163
923
0
27 Oct 2017
Squared Earth Mover's Distance-based Loss for Training Deep Neural Networks
L. Hou
Chen-Ping Yu
Dimitris Samaras
114
152
0
17 Nov 2016
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
351
4,635
0
10 Nov 2016
Multiclass Classification Calibration Functions
Bernardo Avila-Pires
Csaba Szepesvári
142
28
0
20 Sep 2016
Structured Prediction Theory Based on Factor Graph Complexity
Corinna Cortes
M. Mohri
Vitaly Kuznetsov
Scott Yang
OOD
54
55
0
20 May 2016
A vector-contraction inequality for Rademacher complexities
Andreas Maurer
77
261
0
01 May 2016
Multi-class SVMs: From Tighter Data-Dependent Generalization Bounds to Novel Algorithms
Yunwen Lei
Ürün Dogan
Alexander Binder
Marius Kloft
56
57
0
14 Jun 2015
In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
AI4CE
99
662
0
20 Dec 2014
1