ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01101
  4. Cited By
Weakly Supervised Representation Learning with Sparse Perturbations

Weakly Supervised Representation Learning with Sparse Perturbations

2 June 2022
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
    SSL
ArXivPDFHTML

Papers citing "Weakly Supervised Representation Learning with Sparse Perturbations"

33 / 33 papers shown
Title
A Revisit of Total Correlation in Disentangled Variational Auto-Encoder with Partial Disentanglement
A Revisit of Total Correlation in Disentangled Variational Auto-Encoder with Partial Disentanglement
Chengrui Li
Yunmiao Wang
Yule Wang
Weihan Li
Dieter Jaeger
Anqi Wu
CoGe
DRL
109
0
0
04 Feb 2025
A Complexity-Based Theory of Compositionality
A Complexity-Based Theory of Compositionality
Eric Elmoznino
Thomas Jiralerspong
Yoshua Bengio
Guillaume Lajoie
CoGe
93
10
0
18 Oct 2024
Smoke and Mirrors in Causal Downstream Tasks
Smoke and Mirrors in Causal Downstream Tasks
Riccardo Cadei
Lukas Lindorfer
Sylvia Cremer
Cordelia Schmid
Francesco Locatello
CML
71
5
0
27 May 2024
From Statistical to Causal Learning
From Statistical to Causal Learning
Bernhard Schölkopf
Julius von Kügelgen
CML
53
45
0
01 Apr 2022
Weakly supervised causal representation learning
Weakly supervised causal representation learning
Johann Brehmer
P. D. Haan
Phillip Lippe
Taco S. Cohen
OOD
CML
57
129
0
30 Mar 2022
CITRIS: Causal Identifiability from Temporal Intervened Sequences
CITRIS: Causal Identifiability from Temporal Intervened Sequences
Phillip Lippe
Sara Magliacane
Sindy Löwe
Yuki M. Asano
Taco S. Cohen
E. Gavves
CML
60
108
0
07 Feb 2022
Properties from Mechanisms: An Equivariance Perspective on Identifiable
  Representation Learning
Properties from Mechanisms: An Equivariance Perspective on Identifiable Representation Learning
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
51
39
0
29 Oct 2021
Learning Temporally Causal Latent Processes from General Temporal Data
Learning Temporally Causal Latent Processes from General Temporal Data
Weiran Yao
Yuewen Sun
Alex Ho
Changyin Sun
Kun Zhang
BDL
CML
57
87
0
11 Oct 2021
Disentanglement via Mechanism Sparsity Regularization: A New Principle
  for Nonlinear ICA
Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA
Sébastien Lachapelle
Pau Rodríguez López
Yash Sharma
Katie Everett
Rémi Le Priol
Alexandre Lacoste
Simon Lacoste-Julien
CML
OOD
77
139
0
21 Jul 2021
Self-Supervised Learning with Data Augmentations Provably Isolates
  Content from Style
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
Julius von Kügelgen
Yash Sharma
Luigi Gresele
Wieland Brendel
Bernhard Schölkopf
M. Besserve
Francesco Locatello
83
314
0
08 Jun 2021
Neural Production Systems: Learning Rule-Governed Visual Dynamics
Neural Production Systems: Learning Rule-Governed Visual Dynamics
Anirudh Goyal
Aniket Didolkar
Nan Rosemary Ke
Charles Blundell
Philippe Beaudoin
N. Heess
Michael C. Mozer
Yoshua Bengio
OCL
79
84
0
02 Mar 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIP
VLM
808
29,167
0
26 Feb 2021
Contrastive Learning Inverts the Data Generating Process
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
264
218
0
17 Feb 2021
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
91
82
0
27 Oct 2020
CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and
  Transfer Learning
CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning
Ossama Ahmed
Frederik Trauble
Anirudh Goyal
Alexander Neitz
Yoshua Bengio
Bernhard Schölkopf
M. Wuthrich
Stefan Bauer
CML
82
121
0
08 Oct 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
82
132
0
21 Jul 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
596
41,736
0
28 May 2020
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
198
2,044
0
16 Apr 2020
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on
  Nonlinear ICA
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA
Ilyes Khemakhem
R. Monti
Diederik P. Kingma
Aapo Hyvarinen
CML
61
114
0
26 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
220
316
0
07 Feb 2020
Recurrent Independent Mechanisms
Recurrent Independent Mechanisms
Anirudh Goyal
Alex Lamb
Jordan Hoffmann
Shagun Sodhani
Sergey Levine
Yoshua Bengio
Bernhard Schölkopf
76
337
0
24 Sep 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
64
593
0
10 Jul 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
79
138
0
07 Jun 2019
Disentangled State Space Representations
Disentangled State Space Representations
Ðorðe Miladinovic
Muhammad Waleed Gondal
Bernhard Schölkopf
J. M. Buhmann
Stefan Bauer
DRL
47
30
0
07 Jun 2019
The Incomplete Rosetta Stone Problem: Identifiability Results for
  Multi-View Nonlinear ICA
The Incomplete Rosetta Stone Problem: Identifiability Results for Multi-View Nonlinear ICA
Luigi Gresele
Paul Kishan Rubenstein
Arash Mehrjou
Francesco Locatello
Bernhard Schölkopf
36
100
0
16 May 2019
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
111
1,466
0
29 Nov 2018
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive
  Learning
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning
Aapo Hyvarinen
Hiroaki Sasaki
Richard Turner
OOD
CML
90
327
0
22 May 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
62
1,346
0
16 Feb 2018
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
I. Higgins
Arka Pal
Andrei A. Rusu
Loic Matthey
Christopher P. Burgess
Alexander Pritzel
M. Botvinick
Charles Blundell
Alexander Lerchner
DRL
104
415
0
26 Jul 2017
Unsupervised Feature Extraction by Time-Contrastive Learning and
  Nonlinear ICA
Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA
Aapo Hyvarinen
H. Morioka
CML
OOD
AI4TS
58
409
0
20 May 2016
Inception-v4, Inception-ResNet and the Impact of Residual Connections on
  Learning
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
346
14,223
0
23 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.9K
193,426
0
10 Dec 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
1