ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.00050
  4. Cited By
FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear
  Modulation
v1v2v3v4 (latest)

FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

31 May 2022
Mehmet Özgür Türkoglu
Alexander Becker
H. Gündüz
Mina Rezaei
Bernd Bischl
Rodrigo Caye Daudt
Stefano Dáronco
Jan Dirk Wegner
Konrad Schindler
    FedMLUQCV
ArXiv (abs)PDFHTML

Papers citing "FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation"

15 / 15 papers shown
Title
X-IL: Exploring the Design Space of Imitation Learning Policies
X-IL: Exploring the Design Space of Imitation Learning Policies
Xiaogang Jia
Atalay Donat
Xi Huang
Xuan Zhao
Denis Blessing
...
Han A. Wang
Hanyi Zhang
Qian Wang
Rudolf Lioutikov
Gerhard Neumann
153
1
0
20 Feb 2025
TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
Yury Gorishniy
Akim Kotelnikov
Artem Babenko
LMTDMoE
278
13
0
31 Oct 2024
Probabilistic road classification in historical maps using synthetic
  data and deep learning
Probabilistic road classification in historical maps using synthetic data and deep learning
Dominik J. Mühlematter
Sebastian Schweizer
Chenjing Jiao
Xue Xia
M. Heitzler
L. Hurni
64
0
0
03 Oct 2024
Regularized Multi-Decoder Ensemble for an Error-Aware Scene
  Representation Network
Regularized Multi-Decoder Ensemble for an Error-Aware Scene Representation Network
Tianyu Xiong
Skylar W. Wurster
Hanqi Guo
Tom Peterka
Han-Wei Shen
UQCV
127
2
0
26 Jul 2024
Understanding Multi-Granularity for Open-Vocabulary Part Segmentation
Understanding Multi-Granularity for Open-Vocabulary Part Segmentation
Jiho Choi
Seonho Lee
Seungho Lee
Minhyun Lee
Hyunjung Shim
OCL
85
0
0
17 Jun 2024
LoRA-Ensemble: Efficient Uncertainty Modelling for Self-Attention Networks
LoRA-Ensemble: Efficient Uncertainty Modelling for Self-Attention Networks
Michelle Halbheer
Dominik J. Mühlematter
Alexander Becker
Dominik Narnhofer
Helge Aasen
Konrad Schindler
Mehmet Özgür Türkoglu
UQCV
125
3
0
23 May 2024
Closing the AI generalization gap by adjusting for dermatology condition
  distribution differences across clinical settings
Closing the AI generalization gap by adjusting for dermatology condition distribution differences across clinical settings
R. Rikhye
Aaron Loh
G. Hong
Preeti Singh
M. A. Smith
...
P. Bui
Yuan Liu
Yun-Hui Liu
Justin M. Ko
Steven Lin
41
1
0
23 Feb 2024
Efficient Deweather Mixture-of-Experts with Uncertainty-aware
  Feature-wise Linear Modulation
Efficient Deweather Mixture-of-Experts with Uncertainty-aware Feature-wise Linear Modulation
Rongyu Zhang
Yulin Luo
Jiaming Liu
Huanrui Yang
Zhen Dong
...
Tomoyuki Okuno
Yohei Nakata
Kurt Keutzer
Yuan Du
Shanghang Zhang
MoMeMoE
74
3
0
27 Dec 2023
Split-Ensemble: Efficient OOD-aware Ensemble via Task and Model
  Splitting
Split-Ensemble: Efficient OOD-aware Ensemble via Task and Model Splitting
Anthony Chen
Huanrui Yang
Yulu Gan
Denis A. Gudovskiy
Zhen Dong
Haofan Wang
Tomoyuki Okuno
Yohei Nakata
Kurt Keutzer
Shanghang Zhang
67
3
0
14 Dec 2023
Improving day-ahead Solar Irradiance Time Series Forecasting by
  Leveraging Spatio-Temporal Context
Improving day-ahead Solar Irradiance Time Series Forecasting by Leveraging Spatio-Temporal Context
Oussama Boussif
Ghait Boukachab
D. Assouline
Stefano Massaroli
T. Yuan
L. Benabbou
Yoshua Bengio
72
16
0
01 Jun 2023
UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
  Satellite Time Series
UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical Satellite Time Series
Patrick Ebel
Vivien Sainte Fare Garnot
M. Schmitt
Jan Dirk Wegner
Xiao Xiang Zhu
87
36
0
11 Apr 2023
Pathologies of Predictive Diversity in Deep Ensembles
Pathologies of Predictive Diversity in Deep Ensembles
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
John P. Cunningham
UQCV
147
14
0
01 Feb 2023
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are
  Conditional Entropy and Mutual Information Appropriate Measures?
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?
Lisa Wimmer
Yusuf Sale
Paul Hofman
Bern Bischl
Eyke Hüllermeier
PERUD
110
77
0
07 Sep 2022
Prior and Posterior Networks: A Survey on Evidential Deep Learning
  Methods For Uncertainty Estimation
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Dennis Ulmer
Christian Hardmeier
J. Frellsen
BDLUQCVUDEDLPER
150
55
0
06 Oct 2021
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCVBDL
290
452
0
17 Jun 2020
1