ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.15865
  4. Cited By
A Review of Mobile Mapping Systems: From Sensors to Applications

A Review of Mobile Mapping Systems: From Sensors to Applications

31 May 2022
Mostafa Elhashash
Hessah Albanwan
R. Qin
ArXiv (abs)PDFHTML

Papers citing "A Review of Mobile Mapping Systems: From Sensors to Applications"

11 / 11 papers shown
Title
TFNet: Exploiting Temporal Cues for Fast and Accurate LiDAR Semantic
  Segmentation
TFNet: Exploiting Temporal Cues for Fast and Accurate LiDAR Semantic Segmentation
Rong Li
Shijie Li
Xieyuanli Chen
Teli Ma
Juergen Gall
Junwei Liang
3DPC
57
28
0
14 Sep 2023
MGNet: Monocular Geometric Scene Understanding for Autonomous Driving
MGNet: Monocular Geometric Scene Understanding for Autonomous Driving
Markus Schön
M. Buchholz
Klaus C. J. Dietmayer
3DPC3DGS
57
44
0
27 Jun 2022
SuMa++: Efficient LiDAR-based Semantic SLAM
SuMa++: Efficient LiDAR-based Semantic SLAM
Xieyuanli Chen
Andres Milioto
Andres Milioto Emanuele Palazzolo
Philippe Giguère
Jens Behley
C. Stachniss
90
442
0
24 May 2021
LiTAMIN2: Ultra Light LiDAR-based SLAM using Geometric Approximation
  applied with KL-Divergence
LiTAMIN2: Ultra Light LiDAR-based SLAM using Geometric Approximation applied with KL-Divergence
Masashi Yokozuka
Kenji Koide
Shuji Oishi
A. Banno
33
80
0
01 Mar 2021
MVLidarNet: Real-Time Multi-Class Scene Understanding for Autonomous
  Driving Using Multiple Views
MVLidarNet: Real-Time Multi-Class Scene Understanding for Autonomous Driving Using Multiple Views
Ke Chen
Ryan Oldja
Nikolai Smolyanskiy
Stan Birchfield
A. Popov
David Wehr
I. Eden
Joachim Pehserl
3DPC
52
35
0
09 Jun 2020
Lidar for Autonomous Driving: The principles, challenges, and trends for
  automotive lidar and perception systems
Lidar for Autonomous Driving: The principles, challenges, and trends for automotive lidar and perception systems
You Li
J. Ibañez-Guzmán
61
557
0
17 Apr 2020
Efficient Continuous-Time SLAM for 3D Lidar-Based Online Mapping
Efficient Continuous-Time SLAM for 3D Lidar-Based Online Mapping
David Droeschel
Sven Behnke
46
176
0
16 Oct 2018
Benchmarking Single Image Dehazing and Beyond
Benchmarking Single Image Dehazing and Beyond
Boyi Li
Wenqi Ren
Dengpan Fu
Dacheng Tao
Dan Feng
Wenjun Zeng
Zhangyang Wang
VLM
72
1,539
0
12 Dec 2017
BlitzNet: A Real-Time Deep Network for Scene Understanding
BlitzNet: A Real-Time Deep Network for Scene Understanding
Nikita Dvornik
K. Shmelkov
Julien Mairal
Cordelia Schmid
SSeg
58
191
0
09 Aug 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.2K
20,892
0
17 Apr 2017
Vision System and Depth Processing for DRC-HUBO+
Vision System and Depth Processing for DRC-HUBO+
Inwook Shim
Seunghak Shin
Yunsu Bok
Kyungdon Joo
Dong-Geol Choi
Joon-Young Lee
Jaesik Park
Jun-Ho Oh
In So Kweon
MDE
54
13
0
21 Sep 2015
1