ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.14283
  4. Cited By
Rethinking Bayesian Learning for Data Analysis: The Art of Prior and
  Inference in Sparsity-Aware Modeling

Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling

28 May 2022
Lei Cheng
Feng Yin
Sergios Theodoridis
S. Chatzis
Tsung-Hui Chang
ArXivPDFHTML

Papers citing "Rethinking Bayesian Learning for Data Analysis: The Art of Prior and Inference in Sparsity-Aware Modeling"

15 / 15 papers shown
Title
Sparsity-Aware Distributed Learning for Gaussian Processes with Linear Multiple Kernel
Sparsity-Aware Distributed Learning for Gaussian Processes with Linear Multiple Kernel
Richard Cornelius Suwandi
Zhidi Lin
Feng Yin
Zhiguo Wang
Sergios Theodoridis
GP
62
1
0
17 Jan 2025
Scalable Random Feature Latent Variable Models
Scalable Random Feature Latent Variable Models
Ying Li
Zhidi Lin
Yuhao Liu
Michael Minyi Zhang
Pablo Martínez Olmos
P. Djuric
BDL
DRL
28
0
0
23 Oct 2024
Preventing Model Collapse in Gaussian Process Latent Variable Models
Preventing Model Collapse in Gaussian Process Latent Variable Models
Ying Li
Zhidi Lin
Feng Yin
Michael Minyi Zhang
VLM
30
1
0
02 Apr 2024
Regularization-Based Efficient Continual Learning in Deep State-Space
  Models
Regularization-Based Efficient Continual Learning in Deep State-Space Models
Yuanhang Zhang
Zhidi Lin
Yiyong Sun
Feng Yin
Carsten Fritsche
CLL
26
2
0
15 Mar 2024
Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field
  and Online Inference
Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference
Zhidi Lin
Yiyong Sun
Feng Yin
Alexandre Thiéry
24
4
0
10 Dec 2023
Learning Sparse Codes with Entropy-Based ELBOs
Learning Sparse Codes with Entropy-Based ELBOs
Dmytro Velychko
Simon Damm
Asja Fischer
Jörg Lücke
19
2
0
03 Nov 2023
Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
  Process State-Space Models
Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian Process State-Space Models
Zhidi Lin
Juan Maroñas
Ying Li
Feng Yin
Sergios Theodoridis
24
3
0
03 Sep 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space
  Model
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
26
7
0
21 Jan 2023
Output-Dependent Gaussian Process State-Space Model
Output-Dependent Gaussian Process State-Space Model
Zhidi Lin
Lei Cheng
Feng Yin
Le Xu
Shuguang Cui
UQCV
33
5
0
15 Dec 2022
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial
  Robustness
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial Robustness
Konstantinos P. Panousis
S. Chatzis
Sergios Theodoridis
BDL
AAML
58
11
0
05 Dec 2021
Local Competition and Stochasticity for Adversarial Robustness in Deep
  Learning
Local Competition and Stochasticity for Adversarial Robustness in Deep Learning
Konstantinos P. Panousis
S. Chatzis
Antonios Alexos
Sergios Theodoridis
BDL
AAML
OOD
56
19
0
04 Jan 2021
Informer: Beyond Efficient Transformer for Long Sequence Time-Series
  Forecasting
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Haoyi Zhou
Shanghang Zhang
J. Peng
Shuai Zhang
Jianxin Li
Hui Xiong
Wan Zhang
AI4TS
169
3,876
0
14 Dec 2020
Variable selection for Gaussian processes via sensitivity analysis of
  the posterior predictive distribution
Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution
Topi Paananen
Juho Piironen
Michael Riis Andersen
Aki Vehtari
76
50
0
21 Dec 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Tensor Decomposition for Signal Processing and Machine Learning
Tensor Decomposition for Signal Processing and Machine Learning
N. Sidiropoulos
L. De Lathauwer
Xiao Fu
Kejun Huang
Evangelos E. Papalexakis
Christos Faloutsos
105
1,342
0
06 Jul 2016
1