Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.13927
Cited By
Probabilistic Transformer: Modelling Ambiguities and Distributions for RNA Folding and Molecule Design
27 May 2022
Jörg Franke
Frederic Runge
Frank Hutter
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Probabilistic Transformer: Modelling Ambiguities and Distributions for RNA Folding and Molecule Design"
13 / 13 papers shown
Title
Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Junjie Xu
Artem Moskalev
Tommaso Mansi
Mangal Prakash
Rui Liao
AI4CE
54
3
0
15 Oct 2024
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
325
4,873
0
24 Feb 2021
Transformers in Vision: A Survey
Salman Khan
Muzammal Naseer
Munawar Hayat
Syed Waqas Zamir
Fahad Shahbaz Khan
M. Shah
ViT
247
2,463
0
04 Jan 2021
Transformer-based Conditional Variational Autoencoder for Controllable Story Generation
Le Fang
Tao Zeng
Chao-Ning Liu
Liefeng Bo
Wen Dong
Changyou Chen
DRL
67
60
0
04 Jan 2021
Review of Machine-Learning Methods for RNA Secondary Structure Prediction
Qi Zhao
Zheng Zhao
Xiaoya Fan
Zhengwei Yuan
Qian Mao
Yudong Yao
35
62
0
01 Sep 2020
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
228
644
0
29 Nov 2018
Molecular Transformer - A Model for Uncertainty-Calibrated Chemical Reaction Prediction
P. Schwaller
Teodoro Laino
John McGuinness
A. Horváth
Constantine Bekas
A. Lee
87
730
0
06 Nov 2018
Deep Reinforcement Learning for De-Novo Drug Design
Mariya Popova
Olexandr Isayev
Alexander Tropsha
62
1,025
0
29 Nov 2017
Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
G. L. Guimaraes
Benjamín Sánchez-Lengeling
Carlos Outeiral
Pedro Luis Cunha Farias
Alán Aspuru-Guzik
GAN
69
523
0
30 May 2017
Molecular De Novo Design through Deep Reinforcement Learning
Marcus Olivecrona
T. Blaschke
Ola Engkvist
Hongming Chen
BDL
92
1,003
0
25 Apr 2017
Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning
Stefan Elfwing
E. Uchibe
Kenji Doya
57
1,702
0
10 Feb 2017
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
123
2,911
0
07 Oct 2016
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
241
10,412
0
21 Jul 2016
1