ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.12449
  4. Cited By
MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent
  Reinforcement Learning

MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent Reinforcement Learning

25 May 2022
Stephanie Milani
Zhicheng Zhang
Nicholay Topin
Z. Shi
Charles A. Kamhoua
Evangelos E. Papalexakis
Fei Fang
    OffRL
ArXivPDFHTML

Papers citing "MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent Reinforcement Learning"

25 / 25 papers shown
Title
Explaining Decisions of Agents in Mixed-Motive Games
Explaining Decisions of Agents in Mixed-Motive Games
Maayan Orner
Oleg Maksimov
Akiva Kleinerman
Charles Ortiz
Sarit Kraus
128
1
0
28 Jan 2025
A Survey of Explainable Reinforcement Learning
A Survey of Explainable Reinforcement Learning
Stephanie Milani
Nicholay Topin
Manuela Veloso
Fei Fang
XAI
LRM
82
54
0
17 Feb 2022
Local Explanations for Reinforcement Learning
Local Explanations for Reinforcement Learning
Ronny Luss
Amit Dhurandhar
Miao Liu
FAtt
OffRL
37
3
0
08 Feb 2022
Collective eXplainable AI: Explaining Cooperative Strategies and Agent
  Contribution in Multiagent Reinforcement Learning with Shapley Values
Collective eXplainable AI: Explaining Cooperative Strategies and Agent Contribution in Multiagent Reinforcement Learning with Shapley Values
Alexandre Heuillet
Fabien Couthouis
Natalia Díaz Rodríguez
53
63
0
04 Oct 2021
The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games
The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games
Chao Yu
Akash Velu
Eugene Vinitsky
Jiaxuan Gao
Yu Wang
Alexandre M. Bayen
Yi Wu
OffRL
132
1,250
0
02 Mar 2021
Iterative Bounding MDPs: Learning Interpretable Policies via
  Non-Interpretable Methods
Iterative Bounding MDPs: Learning Interpretable Policies via Non-Interpretable Methods
Nicholay Topin
Stephanie Milani
Fei Fang
Manuela Veloso
OffRL
45
36
0
25 Feb 2021
Flatland-RL : Multi-Agent Reinforcement Learning on Trains
Flatland-RL : Multi-Agent Reinforcement Learning on Trains
Sharada Mohanty
Erik Nygren
Florian Laurent
Manuel Schneider
Christian Scheller
...
Christian Baumberger
Gereon Vienken
Irene Sturm
Guillaume Sartoretti
G. Spigler
OffRL
77
58
0
10 Dec 2020
Explanation of Reinforcement Learning Model in Dynamic Multi-Agent
  System
Explanation of Reinforcement Learning Model in Dynamic Multi-Agent System
Xinzhi Wang
Huao Li
Hui Zhang
M. Lewis
Katia Sycara
34
4
0
04 Aug 2020
MARLeME: A Multi-Agent Reinforcement Learning Model Extraction Library
MARLeME: A Multi-Agent Reinforcement Learning Model Extraction Library
Dmitry Kazhdan
Z. Shams
Pietro Lio
45
17
0
16 Apr 2020
Dota 2 with Large Scale Deep Reinforcement Learning
Dota 2 with Large Scale Deep Reinforcement Learning
OpenAI OpenAI
:
Christopher Berner
Greg Brockman
Brooke Chan
...
Szymon Sidor
Ilya Sutskever
Jie Tang
Filip Wolski
Susan Zhang
GNN
VLM
CLL
AI4CE
LRM
161
1,823
0
13 Dec 2019
Conservative Q-Improvement: Reinforcement Learning for an Interpretable
  Decision-Tree Policy
Conservative Q-Improvement: Reinforcement Learning for an Interpretable Decision-Tree Policy
Aaron M. Roth
Nicholay Topin
Pooyan Jamshidi
Manuela Veloso
OffRL
54
48
0
02 Jul 2019
QTRAN: Learning to Factorize with Transformation for Cooperative
  Multi-Agent Reinforcement Learning
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
Kyunghwan Son
Daewoo Kim
Wan Ju Kang
D. Hostallero
Yung Yi
OffRL
52
805
0
14 May 2019
Autonomous Air Traffic Controller: A Deep Multi-Agent Reinforcement
  Learning Approach
Autonomous Air Traffic Controller: A Deep Multi-Agent Reinforcement Learning Approach
Marc Brittain
Peng Wei
DRL
30
36
0
02 May 2019
Dataset Distillation
Dataset Distillation
Tongzhou Wang
Jun-Yan Zhu
Antonio Torralba
Alexei A. Efros
DD
78
295
0
27 Nov 2018
Actor-Attention-Critic for Multi-Agent Reinforcement Learning
Actor-Attention-Critic for Multi-Agent Reinforcement Learning
Shariq Iqbal
Fei Sha
67
751
0
05 Oct 2018
Verifiable Reinforcement Learning via Policy Extraction
Verifiable Reinforcement Learning via Policy Extraction
Osbert Bastani
Yewen Pu
Armando Solar-Lezama
OffRL
122
337
0
22 May 2018
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent
  Reinforcement Learning
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Tabish Rashid
Mikayel Samvelyan
Christian Schroeder de Witt
Gregory Farquhar
Jakob N. Foerster
Shimon Whiteson
143
1,671
0
30 Mar 2018
Value-Decomposition Networks For Cooperative Multi-Agent Learning
Value-Decomposition Networks For Cooperative Multi-Agent Learning
P. Sunehag
Guy Lever
A. Gruslys
Wojciech M. Czarnecki
V. Zambaldi
...
Marc Lanctot
Nicolas Sonnerat
Joel Z Leibo
K. Tuyls
T. Graepel
67
1,006
0
16 Jun 2017
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
Ryan J. Lowe
Yi Wu
Aviv Tamar
J. Harb
Pieter Abbeel
Igor Mordatch
140
4,482
0
07 Jun 2017
Counterfactual Multi-Agent Policy Gradients
Counterfactual Multi-Agent Policy Gradients
Jakob N. Foerster
Gregory Farquhar
Triantafyllos Afouras
Nantas Nardelli
Shimon Whiteson
122
2,074
0
24 May 2017
Stabilising Experience Replay for Deep Multi-Agent Reinforcement
  Learning
Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning
Jakob N. Foerster
Nantas Nardelli
Gregory Farquhar
Triantafyllos Afouras
Philip Torr
Pushmeet Kohli
Shimon Whiteson
OffRL
186
597
0
28 Feb 2017
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
180
3,699
0
10 Jun 2016
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
344
19,643
0
09 Mar 2015
Optimal and Approximate Q-value Functions for Decentralized POMDPs
Optimal and Approximate Q-value Functions for Decentralized POMDPs
F. Oliehoek
M. Spaan
N. Vlassis
OffRL
110
498
0
31 Oct 2011
A Reduction of Imitation Learning and Structured Prediction to No-Regret
  Online Learning
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
OffRL
216
3,216
0
02 Nov 2010
1