Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.11359
Cited By
v1
v2 (latest)
Towards Size-Independent Generalization Bounds for Deep Operator Nets
23 May 2022
Pulkit Gopalani
Sayar Karmakar
Dibyakanti Kumar
Anirbit Mukherjee
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Towards Size-Independent Generalization Bounds for Deep Operator Nets"
31 / 31 papers shown
Title
Investigating the Ability of PINNs To Solve Burgers' PDE Near Finite-Time BlowUp
Dibyakanti Kumar
Anirbit Mukherjee
66
2
0
08 Oct 2023
Size Lowerbounds for Deep Operator Networks
Anirbit Mukherjee
Amartya Roy
AI4CE
66
3
0
11 Aug 2023
Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere
Boris Bonev
Thorsten Kurth
Christian Hundt
Jaideep Pathak
Maximilian Baust
K. Kashinath
Anima Anandkumar
AI4Cl
AI4CE
74
147
0
06 Jun 2023
On Size-Independent Sample Complexity of ReLU Networks
Mark Sellke
67
6
0
03 Jun 2023
Fourier Neural Operator Surrogate Model to Predict 3D Seismic Waves Propagation
F. Lehmann
F. Gatti
M. Bertin
Didier Clouteau
AI4CE
64
27
0
20 Apr 2023
Learning in latent spaces improves the predictive accuracy of deep neural operators
Katiana Kontolati
S. Goswami
George Karniadakis
Michael D. Shields
AI4CE
88
22
0
15 Apr 2023
Transfer Learning Enhanced DeepONet for Long-Time Prediction of Evolution Equations
Wuzhe Xu
Yulong Lu
Li Wang
60
38
0
09 Dec 2022
FourCastNet: Accelerating Global High-Resolution Weather Forecasting using Adaptive Fourier Neural Operators
Thorsten Kurth
Shashank Subramanian
P. Harrington
Jaideep Pathak
Morteza Mardani
D. Hall
Andrea Miele
K. Kashinath
Anima Anandkumar
AI4Cl
86
193
0
08 Aug 2022
Deep transfer operator learning for partial differential equations under conditional shift
S. Goswami
Katiana Kontolati
Michael D. Shields
George Karniadakis
74
109
0
20 Apr 2022
MultiAuto-DeepONet: A Multi-resolution Autoencoder DeepONet for Nonlinear Dimension Reduction, Uncertainty Quantification and Operator Learning of Forward and Inverse Stochastic Problems
Jiahao Zhang
Shiqi Zhang
Guang Lin
87
15
0
07 Apr 2022
Enhanced DeepONet for Modeling Partial Differential Operators Considering Multiple Input Functions
Lesley Tan
Liang Chen
49
14
0
17 Feb 2022
Neural Stochastic PDEs: Resolution-Invariant Learning of Continuous Spatiotemporal Dynamics
C. Salvi
M. Lemercier
A. Gerasimovičs
AI4CE
67
45
0
19 Oct 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
92
72
0
06 Sep 2021
Learning Dissipative Dynamics in Chaotic Systems
Zong-Yi Li
Miguel Liu-Schiaffini
Nikola B. Kovachki
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
81
31
0
13 Jun 2021
A Study of the Mathematics of Deep Learning
Anirbit Mukherjee
33
4
0
28 Apr 2021
Learning the solution operator of parametric partial differential equations with physics-informed DeepOnets
Sizhuang He
Hanwen Wang
P. Perdikaris
AI4CE
97
707
0
19 Mar 2021
Teaching the Incompressible Navier-Stokes Equations to Fast Neural Surrogate Models in 3D
Nils Wandel
Michael Weinmann
Reinhard Klein
AI4CE
75
51
0
22 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
504
2,453
0
18 Oct 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
77
175
0
29 Jun 2020
Dropout: Explicit Forms and Capacity Control
R. Arora
Peter L. Bartlett
Poorya Mianjy
Nathan Srebro
104
38
0
06 Mar 2020
Rethinking Bias-Variance Trade-off for Generalization of Neural Networks
Zitong Yang
Yaodong Yu
Chong You
Jacob Steinhardt
Yi-An Ma
69
185
0
26 Feb 2020
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
248
2,158
0
08 Oct 2019
Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction
N. Benjamin Erichson
Michael Muehlebach
Michael W. Mahoney
AI4CE
PINN
71
141
0
26 May 2019
Stronger generalization bounds for deep nets via a compression approach
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
89
643
0
14 Feb 2018
Size-Independent Sample Complexity of Neural Networks
Noah Golowich
Alexander Rakhlin
Ohad Shamir
154
551
0
18 Dec 2017
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
125
1,390
0
30 Sep 2017
DGM: A deep learning algorithm for solving partial differential equations
Justin A. Sirignano
K. Spiliopoulos
AI4CE
93
2,067
0
24 Aug 2017
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
88
610
0
29 Jul 2017
Spectrally-normalized margin bounds for neural networks
Peter L. Bartlett
Dylan J. Foster
Matus Telgarsky
ODL
212
1,225
0
26 Jun 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
117
820
0
31 Mar 2017
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
292
591
0
27 Feb 2015
1