Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.02902
Cited By
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
5 May 2022
R. Mojgani
Maciej Balajewicz
Pedram Hassanzadeh
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks"
9 / 9 papers shown
Title
Integration Matters for Learning PDEs with Backwards SDEs
Sungje Park
Stephen Tu
PINN
79
0
0
02 May 2025
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
41
2
0
04 Oct 2024
SetPINNs: Set-based Physics-informed Neural Networks
Mayank Nagda
Phil Ostheimer
Thomas Specht
Frank Rhein
Fabian Jirasek
Stephan Mandt
Marius Kloft
Sophie Fellenz
PINN
3DPC
70
1
0
30 Sep 2024
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
R. Mattey
Susanta Ghosh
AI4CE
51
1
0
09 May 2024
Macroscopic auxiliary asymptotic preserving neural networks for the linear radiative transfer equations
Hongyan Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
45
2
0
04 Mar 2024
Bayesian Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires
J. Dabrowski
D. Pagendam
J. Hilton
Conrad Sanderson
Dan MacKinlay
C. Huston
Andrew Bolt
Petra Kuhnert
PINN
52
17
0
02 Dec 2022
Residual-Quantile Adjustment for Adaptive Training of Physics-informed Neural Network
Jiayue Han
Zhiqiang Cai
Zhiyou Wu
Xiang Zhou
73
7
0
09 Sep 2022
Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flow
Adam Subel
Yifei Guan
Ashesh Chattopadhyay
Pedram Hassanzadeh
AI4CE
40
42
0
07 Jun 2022
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
50
497
0
09 Feb 2021
1