ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.02708
  4. Cited By
Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular
  Property Prediction

Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction

5 May 2022
Wenlin Chen
Austin Tripp
José Miguel Hernández-Lobato
ArXivPDFHTML

Papers citing "Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction"

13 / 13 papers shown
Title
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
GOLLuM: Gaussian Process Optimized LLMs -- Reframing LLM Finetuning through Bayesian Optimization
Bojana Ranković
P. Schwaller
BDL
172
0
0
08 Apr 2025
Knowledge-enhanced Relation Graph and Task Sampling for Few-shot
  Molecular Property Prediction
Knowledge-enhanced Relation Graph and Task Sampling for Few-shot Molecular Property Prediction
Zeyu Wang
Tianyi Jiang
Yao Lu
Xiaoze Bao
Shanqing Yu
Bin Wei
Qi Xuan
42
1
0
24 May 2024
In-Context Learning for Few-Shot Molecular Property Prediction
In-Context Learning for Few-Shot Molecular Property Prediction
Christopher Fifty
J. Leskovec
Sebastian Thrun
36
5
0
13 Oct 2023
A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
  Future Directions
A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions
Zemin Liu
Yuan N. Li
Nan-Fang Chen
Qian Wang
Bryan Hooi
Bin He
FaML
14
13
0
26 Aug 2023
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Can Chen
Xiangshan Chen
Chen-li Ma
Zixuan Liu
Xue Liu
86
35
0
24 Jul 2022
DOCKSTRING: easy molecular docking yields better benchmarks for ligand
  design
DOCKSTRING: easy molecular docking yields better benchmarks for ligand design
Miguel García-Ortegón
G. Simm
Austin Tripp
José Miguel Hernández-Lobato
A. Bender
S. Bacallado
37
75
0
29 Oct 2021
Meta-Calibration: Learning of Model Calibration Using Differentiable
  Expected Calibration Error
Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
UQCV
OOD
43
21
0
17 Jun 2021
Few-Shot Graph Learning for Molecular Property Prediction
Few-Shot Graph Learning for Molecular Property Prediction
Zhichun Guo
Chuxu Zhang
W. Yu
John E. Herr
Olaf Wiest
Meng Jiang
Nitesh V. Chawla
AI4CE
116
170
0
16 Feb 2021
On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach
On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach
Yuanhao Wang
Guodong Zhang
Jimmy Ba
33
100
0
16 Oct 2019
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in
  Gaussian Process Hybrid Deep Networks
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
68
171
0
08 Jul 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
338
11,684
0
09 Mar 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
184
1,778
0
02 Mar 2017
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
89
271
0
24 Feb 2014
1