Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.11620
Cited By
Multi-Layer Modeling of Dense Vegetation from Aerial LiDAR Scans
25 April 2022
E. Kalinicheva
Loic Landrieu
Clement Mallet
N. Chehata
3DPC
3DV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multi-Layer Modeling of Dense Vegetation from Aerial LiDAR Scans"
8 / 8 papers shown
Title
Predicting Vegetation Stratum Occupancy from Airborne LiDAR Data with Deep Learning
E. Kalinicheva
Loic Landrieu
Clement Mallet
N. Chehata
3DPC
AI4CE
45
5
0
20 Jan 2022
Vegetation Stratum Occupancy Prediction from Airborne LiDAR 3D Point Clouds
E. Kalinicheva
Loic Landrieu
Clement Mallet
N. Chehata
3DV
3DPC
6
2
0
27 Dec 2021
Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles
Nico Lang
Nikolai Kalischek
J. Armston
Konrad Schindler
R. Dubayah
Jan Dirk Wegner
21
161
0
05 Mar 2021
Deep Learning for 3D Point Clouds: A Survey
Yulan Guo
Hanyun Wang
Qingyong Hu
Hao Liu
Li Liu
Bennamoun
3DPC
69
1,662
0
27 Dec 2019
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
175
4,303
0
06 Mar 2019
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
C. Qi
L. Yi
Hao Su
Leonidas Guibas
3DPC
3DV
292
11,000
0
07 Jun 2017
Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds
Hamid Hamraz
M. Contreras
Jun Zhang
16
70
0
17 Feb 2017
A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data
Hamid Hamraz
M. Contreras
Jun Zhang
13
80
0
01 Jan 2017
1