ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.11531
  4. Cited By
VITA: A Multi-Source Vicinal Transfer Augmentation Method for
  Out-of-Distribution Generalization

VITA: A Multi-Source Vicinal Transfer Augmentation Method for Out-of-Distribution Generalization

25 April 2022
Minghui Chen
Cheng Wen
Feng Zheng
Fengxiang He
Ling Shao
    OODD
ArXiv (abs)PDFHTML

Papers citing "VITA: A Multi-Source Vicinal Transfer Augmentation Method for Out-of-Distribution Generalization"

42 / 42 papers shown
Title
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
283
30,149
0
01 Mar 2022
Recent advances in deep learning theory
Recent advances in deep learning theory
Fengxiang He
Dacheng Tao
AI4CE
79
51
0
20 Dec 2020
Maximum-Entropy Adversarial Data Augmentation for Improved
  Generalization and Robustness
Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness
Long Zhao
Ting Liu
Xi Peng
Dimitris N. Metaxas
OODAAML
103
169
0
15 Oct 2020
Increasing the Robustness of Semantic Segmentation Models with
  Painting-by-Numbers
Increasing the Robustness of Semantic Segmentation Models with Painting-by-Numbers
Christoph Kamann
Burkhard Güssefeld
Robin Hutmacher
J. H. Metzen
Carsten Rother
35
18
0
12 Oct 2020
Improving robustness against common corruptions by covariate shift
  adaptation
Improving robustness against common corruptions by covariate shift adaptation
Steffen Schneider
E. Rusak
L. Eck
Oliver Bringmann
Wieland Brendel
Matthias Bethge
VLM
99
482
0
30 Jun 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
Basel Alomair
Jacob Steinhardt
Justin Gilmer
OOD
350
1,751
0
29 Jun 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
56
404
0
26 Feb 2020
AugMix: A Simple Data Processing Method to Improve Robustness and
  Uncertainty
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Dan Hendrycks
Norman Mu
E. D. Cubuk
Barret Zoph
Justin Gilmer
Balaji Lakshminarayanan
OODUQCV
125
1,305
0
05 Dec 2019
Benchmarking Robustness in Object Detection: Autonomous Driving when
  Winter is Coming
Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
Claudio Michaelis
Benjamin Mitzkus
Robert Geirhos
E. Rusak
Oliver Bringmann
Alexander S. Ecker
Matthias Bethge
Wieland Brendel
3DPC
99
449
0
17 Jul 2019
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian
  Augmentation
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
Raphael Gontijo-Lopes
Dong Yin
Ben Poole
Justin Gilmer
E. D. Cubuk
AAML
142
205
0
06 Jun 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
622
4,798
0
13 May 2019
Making Convolutional Networks Shift-Invariant Again
Making Convolutional Networks Shift-Invariant Again
Richard Y. Zhang
OOD
93
798
0
25 Apr 2019
Benchmarking Neural Network Robustness to Common Corruptions and
  Perturbations
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OODVLM
191
3,445
0
28 Mar 2019
advertorch v0.1: An Adversarial Robustness Toolbox based on PyTorch
advertorch v0.1: An Adversarial Robustness Toolbox based on PyTorch
G. Ding
Luyu Wang
Xiaomeng Jin
68
183
0
20 Feb 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
104
320
0
29 Jan 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
143
2,559
0
24 Jan 2019
ImageNet-trained CNNs are biased towards texture; increasing shape bias
  improves accuracy and robustness
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
118
2,672
0
29 Nov 2018
Generalisation in humans and deep neural networks
Generalisation in humans and deep neural networks
Robert Geirhos
Carlos R. Medina Temme
Jonas Rauber
Heiko H. Schutt
Matthias Bethge
Felix Wichmann
OOD
107
609
0
27 Aug 2018
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OODFedMLELM
171
414
0
01 Jun 2018
Why do deep convolutional networks generalize so poorly to small image
  transformations?
Why do deep convolutional networks generalize so poorly to small image transformations?
Aharon Azulay
Yair Weiss
77
561
0
30 May 2018
A Kernel Theory of Modern Data Augmentation
A Kernel Theory of Modern Data Augmentation
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
108
193
0
16 Mar 2018
Toward Multimodal Image-to-Image Translation
Toward Multimodal Image-to-Image Translation
Jun-Yan Zhu
Richard Y. Zhang
Deepak Pathak
Trevor Darrell
Alexei A. Efros
Oliver Wang
Eli Shechtman
126
1,355
0
30 Nov 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
282
9,797
0
25 Oct 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial
  Examples
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
66
641
0
13 Sep 2017
Improved Regularization of Convolutional Neural Networks with Cutout
Improved Regularization of Convolutional Neural Networks with Cutout
Terrance Devries
Graham W. Taylor
119
3,773
0
15 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
315
12,117
0
19 Jun 2017
A Study and Comparison of Human and Deep Learning Recognition
  Performance Under Visual Distortions
A Study and Comparison of Human and Deep Learning Recognition Performance Under Visual Distortions
Samuel F. Dodge
Lina Karam
3DH
73
423
0
06 May 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,558
0
31 Mar 2017
Image-to-Image Translation with Conditional Adversarial Networks
Image-to-Image Translation with Conditional Adversarial Networks
Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
SSeg
331
19,675
0
21 Nov 2016
Examining the Impact of Blur on Recognition by Convolutional Networks
Examining the Impact of Blur on Recognition by Convolutional Networks
Igor Vasiljevic
Ayan Chakrabarti
Gregory Shakhnarovich
64
198
0
17 Nov 2016
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
522
10,345
0
16 Nov 2016
Least Squares Generative Adversarial Networks
Least Squares Generative Adversarial Networks
Xudong Mao
Qing Li
Haoran Xie
Raymond Y. K. Lau
Zhen Wang
Stephen Paul Smolley
GAN
333
4,577
0
13 Nov 2016
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
472
3,147
0
04 Nov 2016
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
148
2,533
0
26 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
775
36,861
0
25 Aug 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OODAAML
266
8,579
0
16 Aug 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
351
7,995
0
23 May 2016
Identity Mappings in Deep Residual Networks
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
354
10,192
0
16 Mar 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.9K
77,341
0
18 May 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
251
4,681
0
21 Dec 2014
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
282
19,107
0
20 Dec 2014
Generalized Denoising Auto-Encoders as Generative Models
Generalized Denoising Auto-Encoders as Generative Models
Yoshua Bengio
L. Yao
Guillaume Alain
Pascal Vincent
113
540
0
29 May 2013
1