ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.07075
  4. Cited By
Learning and controlling the source-filter representation of speech with
  a variational autoencoder
v1v2v3 (latest)

Learning and controlling the source-filter representation of speech with a variational autoencoder

14 April 2022
Samir Sadok
Simon Leglaive
Laurent Girin
Xavier Alameda-Pineda
Renaud Séguier
    SSLDRLBDL
ArXiv (abs)PDFHTML

Papers citing "Learning and controlling the source-filter representation of speech with a variational autoencoder"

35 / 35 papers shown
Title
Neural Analysis and Synthesis: Reconstructing Speech from
  Self-Supervised Representations
Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations
Hyeong-Seok Choi
Juheon Lee
W. Kim
Jie Hwan Lee
Hoon Heo
Kyogu Lee
98
158
0
27 Oct 2021
Neural Pitch-Shifting and Time-Stretching with Controllable LPCNet
Neural Pitch-Shifting and Time-Stretching with Controllable LPCNet
Max Morrison
Zeyu Jin
Nicholas J. Bryan
Juan-Pablo Caceres
Bryan Pardo
66
14
0
05 Oct 2021
Unsupervised Speech Enhancement using Dynamical Variational
  Auto-Encoders
Unsupervised Speech Enhancement using Dynamical Variational Auto-Encoders
Xiaoyu Bie
Simon Leglaive
Xavier Alameda-Pineda
Laurent Girin
DiffM
89
55
0
23 Jun 2021
Deep Learning Based Assessment of Synthetic Speech Naturalness
Deep Learning Based Assessment of Synthetic Speech Naturalness
Gabriel Mittag
Sebastian Möller
73
64
0
23 Apr 2021
Variational Autoencoder for Speech Enhancement with a Noise-Aware
  Encoder
Variational Autoencoder for Speech Enhancement with a Noise-Aware Encoder
Hu Fang
Guillaume Carbajal
S. Wermter
Timo Gerkmann
85
59
0
17 Feb 2021
Guided Variational Autoencoder for Speech Enhancement With a Supervised
  Classifier
Guided Variational Autoencoder for Speech Enhancement With a Supervised Classifier
Guillaume Carbajal
Julius Richter
Timo Gerkmann
DRLSSL
42
16
0
12 Feb 2021
A Sober Look at the Unsupervised Learning of Disentangled
  Representations and their Evaluation
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
75
70
0
27 Oct 2020
Dynamical Variational Autoencoders: A Comprehensive Review
Dynamical Variational Autoencoders: A Comprehensive Review
Laurent Girin
Simon Leglaive
Xiaoyu Bie
Julien Diard
Thomas Hueber
Xavier Alameda-Pineda
BDL
103
219
0
28 Aug 2020
NVAE: A Deep Hierarchical Variational Autoencoder
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
85
915
0
08 Jul 2020
Unsupervised Speech Decomposition via Triple Information Bottleneck
Unsupervised Speech Decomposition via Triple Information Bottleneck
Kaizhi Qian
Yang Zhang
Shiyu Chang
David D. Cox
M. Hasegawa-Johnson
82
185
0
23 Apr 2020
GANSpace: Discovering Interpretable GAN Controls
GANSpace: Discovering Interpretable GAN Controls
Erik Härkönen
Aaron Hertzmann
J. Lehtinen
Sylvain Paris
128
902
0
06 Apr 2020
Source Separation with Deep Generative Priors
Source Separation with Deep Generative Priors
V. Jayaram
John Thickstun
77
40
0
19 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGeOODDRL
242
320
0
07 Feb 2020
Controlling generative models with continuous factors of variations
Controlling generative models with continuous factors of variations
Antoine Plumerault
Hervé Le Borgne
C´eline Hudelot
DRL
87
127
0
28 Jan 2020
Disentanglement by Nonlinear ICA with General Incompressible-flow
  Networks (GIN)
Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)
Peter Sorrenson
Carsten Rother
Ullrich Kothe
DRLCML
73
121
0
14 Jan 2020
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGeDRL
124
139
0
22 Oct 2019
Adversarially Trained End-to-end Korean Singing Voice Synthesis System
Adversarially Trained End-to-end Korean Singing Voice Synthesis System
Juheon Lee
Hyeong-Seok Choi
Chang-Bin Jeon
Junghyun Koo
Kyogu Lee
72
78
0
06 Aug 2019
GANalyze: Toward Visual Definitions of Cognitive Image Properties
GANalyze: Toward Visual Definitions of Cognitive Image Properties
L. Goetschalckx
A. Andonian
A. Oliva
Phillip Isola
FAttGAN
84
314
0
24 Jun 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRLCMLCoGe
98
124
0
03 May 2019
Neural source-filter waveform models for statistical parametric speech
  synthesis
Neural source-filter waveform models for statistical parametric speech synthesis
Xin Wang
Shinji Takaki
Junichi Yamagishi
87
118
0
27 Apr 2019
Diagnosing and Enhancing VAE Models
Diagnosing and Enhancing VAE Models
Bin Dai
David Wipf
DRL
68
381
0
14 Mar 2019
Speech enhancement with variational autoencoders and alpha-stable
  distributions
Speech enhancement with variational autoencoders and alpha-stable distributions
Simon Leglaive
Umut Simsekli
Antoine Liutkus
Laurent Girin
Radu Horaud
DRL
53
36
0
08 Feb 2019
A variance modeling framework based on variational autoencoders for
  speech enhancement
A variance modeling framework based on variational autoencoders for speech enhancement
Simon Leglaive
Laurent Girin
Radu Horaud
DRL
53
91
0
05 Feb 2019
Towards a Definition of Disentangled Representations
Towards a Definition of Disentangled Representations
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
OCLDRL
113
480
0
05 Dec 2018
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
141
1,473
0
29 Nov 2018
WaveGlow: A Flow-based Generative Network for Speech Synthesis
WaveGlow: A Flow-based Generative Network for Speech Synthesis
R. Prenger
Rafael Valle
Bryan Catanzaro
155
1,036
0
31 Oct 2018
LPCNet: Improving Neural Speech Synthesis Through Linear Prediction
LPCNet: Improving Neural Speech Synthesis Through Linear Prediction
J. Valin
Jan Skoglund
74
451
0
28 Oct 2018
CREPE: A Convolutional Representation for Pitch Estimation
CREPE: A Convolutional Representation for Pitch Estimation
Jong Wook Kim
Justin Salamon
P. Li
J. P. Bello
69
385
0
17 Feb 2018
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGeOOD
70
1,356
0
16 Feb 2018
Statistical Speech Enhancement Based on Probabilistic Integration of
  Variational Autoencoder and Non-Negative Matrix Factorization
Statistical Speech Enhancement Based on Probabilistic Integration of Variational Autoencoder and Non-Negative Matrix Factorization
Yoshiaki Bando
Masato Mimura
Katsutoshi Itoyama
Kazuyoshi Yoshii
Tatsuya Kawahara
71
120
0
31 Oct 2017
Unsupervised Learning of Disentangled and Interpretable Representations
  from Sequential Data
Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data
Wei-Ning Hsu
Yu Zhang
James R. Glass
BDLSSL
84
354
0
22 Sep 2017
Voice Conversion from Non-parallel Corpora Using Variational
  Auto-encoder
Voice Conversion from Non-parallel Corpora Using Variational Auto-encoder
Chin-Cheng Hsu
Hsin-Te Hwang
Yi-Chiao Wu
Yu Tsao
H. Wang
93
304
0
13 Oct 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
161
4,238
0
12 Jun 2016
Adversarial Autoencoders
Adversarial Autoencoders
Alireza Makhzani
Jonathon Shlens
Navdeep Jaitly
Ian Goodfellow
Brendan J. Frey
GAN
106
2,228
0
18 Nov 2015
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
286
12,460
0
24 Jun 2012
1