ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.02782
  4. Cited By
GemNet-OC: Developing Graph Neural Networks for Large and Diverse
  Molecular Simulation Datasets

GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets

6 April 2022
Johannes Gasteiger
Muhammed Shuaibi
Anuroop Sriram
Stephan Günnemann
Zachary W. Ulissi
C. L. Zitnick
Abhishek Das
    AI4TS
    MLAU
ArXivPDFHTML

Papers citing "GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets"

17 / 17 papers shown
Title
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Yasir Ghunaim
Andrés Villa
Gergo Ignacz
Gyorgy Szekely
Motasem Alfarra
Bernard Ghanem
AI4CE
90
0
0
28 Apr 2025
Pre-training Graph Neural Networks with Structural Fingerprints for Materials Discovery
Shuyi Jia
Shitij Govil
Manav Ramprasad
Victor Fung
AI4CE
64
1
0
03 Mar 2025
MoMa: A Modular Deep Learning Framework for Material Property Prediction
MoMa: A Modular Deep Learning Framework for Material Property Prediction
Botian Wang
Y. Ouyang
Yaohui Li
Yixuan Wang
Haorui Cui
Jianbing Zhang
Xiaonan Wang
Wei-Ying Ma
Hao Zhou
49
0
0
21 Feb 2025
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Luis Barroso-Luque
Muhammed Shuaibi
Xiang Fu
Brandon M. Wood
Misko Dzamba
Meng Gao
Ammar Rizvi
C. L. Zitnick
Zachary W. Ulissi
AI4CE
PINN
41
16
0
16 Oct 2024
GeoMFormer: A General Architecture for Geometric Molecular
  Representation Learning
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
38
5
0
24 Jun 2024
AdsorbDiff: Adsorbate Placement via Conditional Denoising Diffusion
AdsorbDiff: Adsorbate Placement via Conditional Denoising Diffusion
Adeesh Kolluru
John R. Kitchin
DiffM
47
4
0
07 May 2024
On the Completeness of Invariant Geometric Deep Learning Models
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
36
2
0
07 Feb 2024
From Molecules to Materials: Pre-training Large Generalizable Models for
  Atomic Property Prediction
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
24
32
0
25 Oct 2023
On the importance of catalyst-adsorbate 3D interactions for relaxed
  energy predictions
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Yoshua Bengio
David Rolnick
32
0
0
10 Oct 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
34
55
0
28 Apr 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
34
79
0
07 Feb 2023
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using
  Generalizable Machine Learning Potentials
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials
Janice Lan
Aini Palizhati
Muhammed Shuaibi
Brandon M. Wood
Brook Wander
Abhishek Das
M. Uyttendaele
C. L. Zitnick
Zachary W. Ulissi
35
44
0
29 Nov 2022
Forces are not Enough: Benchmark and Critical Evaluation for Machine
  Learning Force Fields with Molecular Simulations
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
32
136
0
13 Oct 2022
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide
  Electrocatalysts
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts
Richard Tran
Janice Lan
Muhammed Shuaibi
Brandon M. Wood
Siddharth Goyal
...
Jehad Abed
Oleksandr Voznyy
Edward H. Sargent
Zachary W. Ulissi
C. L. Zitnick
28
173
0
17 Jun 2022
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
174
246
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
206
1,240
0
08 Jan 2021
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
The Open Catalyst 2020 (OC20) Dataset and Community Challenges
L. Chanussot
Abhishek Das
Siddharth Goyal
Thibaut Lavril
Muhammed Shuaibi
...
Brandon M. Wood
Junwoong Yoon
Devi Parikh
C. L. Zitnick
Zachary W. Ulissi
232
503
0
20 Oct 2020
1