Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.02593
Cited By
Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise
6 April 2022
D. Jakovetić
Dragana Bajović
Anit Kumar Sahu
S. Kar
Nemanja Milošević
Dusan Stamenkovic
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise"
18 / 18 papers shown
Title
Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees
Aleksandar Armacki
Shuhua Yu
Pranay Sharma
Gauri Joshi
Dragana Bajović
D. Jakovetić
S. Kar
83
2
0
17 Oct 2024
The Heavy-Tail Phenomenon in SGD
Mert Gurbuzbalaban
Umut Simsekli
Lingjiong Zhu
45
126
0
08 Jun 2020
Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient Clipping
Eduard A. Gorbunov
Marina Danilova
Alexander Gasnikov
48
122
0
21 May 2020
The Geometry of Sign Gradient Descent
Lukas Balles
Fabian Pedregosa
Nicolas Le Roux
ODL
56
26
0
19 Feb 2020
On the Heavy-Tailed Theory of Stochastic Gradient Descent for Deep Neural Networks
Umut Simsekli
Mert Gurbuzbalaban
T. H. Nguyen
G. Richard
Levent Sagun
61
58
0
29 Nov 2019
AdaCliP: Adaptive Clipping for Private SGD
Venkatadheeraj Pichapati
A. Suresh
Felix X. Yu
Sashank J. Reddi
Sanjiv Kumar
51
124
0
20 Aug 2019
Algorithms of Robust Stochastic Optimization Based on Mirror Descent Method
A. Juditsky
A. Nazin
A. S. Nemirovsky
Alexandre B. Tsybakov
34
64
0
05 Jul 2019
Why gradient clipping accelerates training: A theoretical justification for adaptivity
J.N. Zhang
Tianxing He
S. Sra
Ali Jadbabaie
72
459
0
28 May 2019
A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
96
146
0
27 May 2019
On the Adaptivity of Stochastic Gradient-Based Optimization
Lihua Lei
Michael I. Jordan
ODL
63
22
0
09 Apr 2019
signSGD: Compressed Optimisation for Non-Convex Problems
Jeremy Bernstein
Yu Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
87
1,041
0
13 Feb 2018
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
219
3,205
0
15 Jun 2016
Perturbed Iterate Analysis for Asynchronous Stochastic Optimization
Horia Mania
Xinghao Pan
Dimitris Papailiopoulos
Benjamin Recht
Kannan Ramchandran
Michael I. Jordan
89
232
0
24 Jul 2015
Convex Optimization for Big Data
Volkan Cevher
Stephen Becker
Mark Schmidt
67
302
0
04 Nov 2014
Robust Consensus in the Presence of Impulsive Channel Noise
Sivaraman Dasarathan
C. Tepedelenlioğlu
M. Banavar
A. Spanias
72
23
0
16 Aug 2014
On the difficulty of training Recurrent Neural Networks
Razvan Pascanu
Tomas Mikolov
Yoshua Bengio
ODL
182
5,334
0
21 Nov 2012
HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
177
2,273
0
28 Jun 2011
Distributed Parameter Estimation in Sensor Networks: Nonlinear Observation Models and Imperfect Communication
S. Kar
José M. F. Moura
K. Ramanan
151
468
0
29 Aug 2008
1