ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1408.3704
40
23

Robust Consensus in the Presence of Impulsive Channel Noise

16 August 2014
Sivaraman Dasarathan
C. Tepedelenlioğlu
M. Banavar
A. Spanias
ArXivPDFHTML
Abstract

A distributed average consensus algorithm robust to a wide range of impulsive channel noise distributions is proposed. This work is the first of its kind in the literature to propose a consensus algorithm which relaxes the requirement of finite moments on the communication noise. It is shown that the nodes reach consensus asymptotically to a finite random variable whose expectation is the desired sample average of the initial observations with a variance that depends on the step size of the algorithm and the receiver nonlinear function. The asymptotic performance is characterized by deriving the asymptotic covariance matrix using results from stochastic approximation theory. Simulations corroborate our analytical findings and highlight the robustness of the proposed algorithm.

View on arXiv
Comments on this paper