ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.15751
  4. Cited By
A Passive Similarity based CNN Filter Pruning for Efficient Acoustic
  Scene Classification

A Passive Similarity based CNN Filter Pruning for Efficient Acoustic Scene Classification

29 March 2022
Arshdeep Singh
Mark D. Plumbley
    3DPC
ArXivPDFHTML

Papers citing "A Passive Similarity based CNN Filter Pruning for Efficient Acoustic Scene Classification"

7 / 7 papers shown
Title
PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern
  Recognition
PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
Qiuqiang Kong
Yin Cao
Turab Iqbal
Yuxuan Wang
Wenwu Wang
Mark D. Plumbley
VLM
SSL
113
1,068
0
21 Dec 2019
Quantifying the Carbon Emissions of Machine Learning
Quantifying the Carbon Emissions of Machine Learning
Alexandre Lacoste
A. Luccioni
Victor Schmidt
Thomas Dandres
82
688
0
21 Oct 2019
Towards Optimal Structured CNN Pruning via Generative Adversarial
  Learning
Towards Optimal Structured CNN Pruning via Generative Adversarial Learning
Shaohui Lin
Rongrong Ji
Chenqian Yan
Baochang Zhang
Liujuan Cao
QiXiang Ye
Feiyue Huang
David Doermann
CVBM
46
506
0
22 Mar 2019
A multi-device dataset for urban acoustic scene classification
A multi-device dataset for urban acoustic scene classification
A. Mesaros
Toni Heittola
Tuomas Virtanen
30
378
0
25 Jul 2018
ThiNet: A Filter Level Pruning Method for Deep Neural Network
  Compression
ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression
Jian-Hao Luo
Jianxin Wu
Weiyao Lin
40
1,758
0
20 Jul 2017
Pruning Filters for Efficient ConvNets
Pruning Filters for Efficient ConvNets
Hao Li
Asim Kadav
Igor Durdanovic
H. Samet
H. Graf
3DPC
175
3,687
0
31 Aug 2016
Exploiting Linear Structure Within Convolutional Networks for Efficient
  Evaluation
Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation
Emily L. Denton
Wojciech Zaremba
Joan Bruna
Yann LeCun
Rob Fergus
FAtt
134
1,682
0
02 Apr 2014
1