Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.13648
Cited By
On the Role of Fixed Points of Dynamical Systems in Training Physics-Informed Neural Networks
25 March 2022
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Role of Fixed Points of Dynamical Systems in Training Physics-Informed Neural Networks"
16 / 16 papers shown
Title
SPIKANs: Separable Physics-Informed Kolmogorov-Arnold Networks
Bruno Jacob
Amanda A. Howard
P. Stinis
45
6
0
09 Nov 2024
Finite basis Kolmogorov-Arnold networks: domain decomposition for data-driven and physics-informed problems
Amanda A. Howard
Bruno Jacob
Sarah H. Murphy
Alexander Heinlein
P. Stinis
AI4CE
44
26
0
28 Jun 2024
PTPI-DL-ROMs: pre-trained physics-informed deep learning-based reduced order models for nonlinear parametrized PDEs
Simone Brivio
S. Fresca
Andrea Manzoni
AI4CE
38
6
0
14 May 2024
PINNACLE: PINN Adaptive ColLocation and Experimental points selection
Gregory Kang Ruey Lau
Apivich Hemachandra
See-Kiong Ng
K. H. Low
3DPC
37
18
0
11 Apr 2024
Challenges in Training PINNs: A Loss Landscape Perspective
Pratik Rathore
Weimu Lei
Zachary Frangella
Lu Lu
Madeleine Udell
AI4CE
PINN
ODL
44
41
0
02 Feb 2024
Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems
Alexander Heinlein
Amanda A. Howard
Damien Beecroft
P. Stinis
AI4CE
26
3
0
15 Jan 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
31
17
0
05 Jan 2024
Stacked networks improve physics-informed training: applications to neural networks and deep operator networks
Amanda A. Howard
Sarah H. Murphy
Shady E. Ahmed
P. Stinis
AI4CE
58
18
0
11 Nov 2023
Investigating the Ability of PINNs To Solve Burgers' PDE Near Finite-Time BlowUp
Dibyakanti Kumar
Anirbit Mukherjee
31
2
0
08 Oct 2023
Predictive Limitations of Physics-Informed Neural Networks in Vortex Shedding
Pi-Yueh Chuang
L. Barba
PINN
37
10
0
31 May 2023
A multifidelity approach to continual learning for physical systems
Amanda A. Howard
Yucheng Fu
P. Stinis
AI4CE
CLL
50
8
0
08 Apr 2023
On the Generalization of PINNs outside the training domain and the Hyperparameters influencing it
Andrea Bonfanti
Roberto Santana
M. Ellero
Babak Gholami
AI4CE
PINN
43
3
0
15 Feb 2023
Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling
Arka Daw
Jie Bu
Sizhuang He
P. Perdikaris
Anuj Karpatne
AI4CE
21
46
0
05 Jul 2022
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
23
39
0
03 May 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
50
494
0
09 Feb 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sizhuang He
Hanwen Wang
P. Perdikaris
131
439
0
18 Dec 2020
1