ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.13648
  4. Cited By
On the Role of Fixed Points of Dynamical Systems in Training
  Physics-Informed Neural Networks

On the Role of Fixed Points of Dynamical Systems in Training Physics-Informed Neural Networks

25 March 2022
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
    PINN
ArXivPDFHTML

Papers citing "On the Role of Fixed Points of Dynamical Systems in Training Physics-Informed Neural Networks"

16 / 16 papers shown
Title
SPIKANs: Separable Physics-Informed Kolmogorov-Arnold Networks
SPIKANs: Separable Physics-Informed Kolmogorov-Arnold Networks
Bruno Jacob
Amanda A. Howard
P. Stinis
45
6
0
09 Nov 2024
Finite basis Kolmogorov-Arnold networks: domain decomposition for
  data-driven and physics-informed problems
Finite basis Kolmogorov-Arnold networks: domain decomposition for data-driven and physics-informed problems
Amanda A. Howard
Bruno Jacob
Sarah H. Murphy
Alexander Heinlein
P. Stinis
AI4CE
44
26
0
28 Jun 2024
PTPI-DL-ROMs: pre-trained physics-informed deep learning-based reduced
  order models for nonlinear parametrized PDEs
PTPI-DL-ROMs: pre-trained physics-informed deep learning-based reduced order models for nonlinear parametrized PDEs
Simone Brivio
S. Fresca
Andrea Manzoni
AI4CE
38
6
0
14 May 2024
PINNACLE: PINN Adaptive ColLocation and Experimental points selection
PINNACLE: PINN Adaptive ColLocation and Experimental points selection
Gregory Kang Ruey Lau
Apivich Hemachandra
See-Kiong Ng
K. H. Low
3DPC
37
18
0
11 Apr 2024
Challenges in Training PINNs: A Loss Landscape Perspective
Challenges in Training PINNs: A Loss Landscape Perspective
Pratik Rathore
Weimu Lei
Zachary Frangella
Lu Lu
Madeleine Udell
AI4CE
PINN
ODL
44
41
0
02 Feb 2024
Multifidelity domain decomposition-based physics-informed neural
  networks and operators for time-dependent problems
Multifidelity domain decomposition-based physics-informed neural networks and operators for time-dependent problems
Alexander Heinlein
Amanda A. Howard
Damien Beecroft
P. Stinis
AI4CE
26
3
0
15 Jan 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
31
17
0
05 Jan 2024
Stacked networks improve physics-informed training: applications to
  neural networks and deep operator networks
Stacked networks improve physics-informed training: applications to neural networks and deep operator networks
Amanda A. Howard
Sarah H. Murphy
Shady E. Ahmed
P. Stinis
AI4CE
58
18
0
11 Nov 2023
Investigating the Ability of PINNs To Solve Burgers' PDE Near
  Finite-Time BlowUp
Investigating the Ability of PINNs To Solve Burgers' PDE Near Finite-Time BlowUp
Dibyakanti Kumar
Anirbit Mukherjee
31
2
0
08 Oct 2023
Predictive Limitations of Physics-Informed Neural Networks in Vortex
  Shedding
Predictive Limitations of Physics-Informed Neural Networks in Vortex Shedding
Pi-Yueh Chuang
L. Barba
PINN
37
10
0
31 May 2023
A multifidelity approach to continual learning for physical systems
A multifidelity approach to continual learning for physical systems
Amanda A. Howard
Yucheng Fu
P. Stinis
AI4CE
CLL
50
8
0
08 Apr 2023
On the Generalization of PINNs outside the training domain and the
  Hyperparameters influencing it
On the Generalization of PINNs outside the training domain and the Hyperparameters influencing it
Andrea Bonfanti
Roberto Santana
M. Ellero
Babak Gholami
AI4CE
PINN
43
3
0
15 Feb 2023
Mitigating Propagation Failures in Physics-informed Neural Networks
  using Retain-Resample-Release (R3) Sampling
Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling
Arka Daw
Jie Bu
Sizhuang He
P. Perdikaris
Anuj Karpatne
AI4CE
21
46
0
05 Jul 2022
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural
  Networks
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
23
39
0
03 May 2021
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
50
494
0
09 Feb 2021
On the eigenvector bias of Fourier feature networks: From regression to
  solving multi-scale PDEs with physics-informed neural networks
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sizhuang He
Hanwen Wang
P. Perdikaris
131
439
0
18 Dec 2020
1