ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.13610
  4. Cited By
Learning to Adapt to Unseen Abnormal Activities under Weak Supervision

Learning to Adapt to Unseen Abnormal Activities under Weak Supervision

25 March 2022
Jaeyoo Park
Junha Kim
Bohyung Han
    OffRL
ArXivPDFHTML

Papers citing "Learning to Adapt to Unseen Abnormal Activities under Weak Supervision"

22 / 22 papers shown
Title
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
293
641
0
19 Sep 2019
PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment
PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment
Kaixin Wang
Jun Hao Liew
Yingtian Zou
Daquan Zhou
Jiashi Feng
VLM
39
1,058
0
18 Aug 2019
Anomaly Detection in Video Sequence with Appearance-Motion
  Correspondence
Anomaly Detection in Video Sequence with Appearance-Motion Correspondence
Trong-Nguyen Nguyen
J. Meunier
77
345
0
17 Aug 2019
Memorizing Normality to Detect Anomaly: Memory-augmented Deep
  Autoencoder for Unsupervised Anomaly Detection
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
Dong Gong
Lingqiao Liu
Vuong Le
Budhaditya Saha
M. Mansour
Svetha Venkatesh
Anton Van Den Hengel
UQCV
34
1,254
0
04 Apr 2019
Graph Convolutional Label Noise Cleaner: Train a Plug-and-play Action
  Classifier for Anomaly Detection
Graph Convolutional Label Noise Cleaner: Train a Plug-and-play Action Classifier for Anomaly Detection
Jia-Xing Zhong
Nannan Li
Weijie Kong
Shan Liu
Thomas H. Li
Ge Li
NoLa
SSL
93
401
0
18 Mar 2019
How to train your MAML
How to train your MAML
Antreas Antoniou
Harrison Edwards
Amos Storkey
47
771
0
22 Oct 2018
Meta-Learning with Latent Embedding Optimization
Meta-Learning with Latent Embedding Optimization
Andrei A. Rusu
Dushyant Rao
Jakub Sygnowski
Oriol Vinyals
Razvan Pascanu
Simon Osindero
R. Hadsell
111
1,366
0
16 Jul 2018
TADAM: Task dependent adaptive metric for improved few-shot learning
TADAM: Task dependent adaptive metric for improved few-shot learning
Boris N. Oreshkin
Pau Rodríguez López
Alexandre Lacoste
90
1,310
0
23 May 2018
Real-world Anomaly Detection in Surveillance Videos
Real-world Anomaly Detection in Surveillance Videos
Waqas Sultani
Chen Chen
M. Shah
AI4TS
107
1,468
0
12 Jan 2018
Meta-Tracker: Fast and Robust Online Adaptation for Visual Object
  Trackers
Meta-Tracker: Fast and Robust Online Adaptation for Visual Object Trackers
Eunbyung Park
Alexander C. Berg
VOT
TTA
48
166
0
09 Jan 2018
Future Frame Prediction for Anomaly Detection -- A New Baseline
Future Frame Prediction for Anomaly Detection -- A New Baseline
Wen Liu
Weixin Luo
Dongze Lian
Shenghua Gao
3DH
95
1,069
0
28 Dec 2017
Learning to Compare: Relation Network for Few-Shot Learning
Learning to Compare: Relation Network for Few-Shot Learning
Flood Sung
Yongxin Yang
Li Zhang
Tao Xiang
Philip Torr
Timothy M. Hospedales
199
4,035
0
16 Nov 2017
Learning to Generalize: Meta-Learning for Domain Generalization
Learning to Generalize: Meta-Learning for Domain Generalization
Da Li
Yongxin Yang
Yi-Zhe Song
Timothy M. Hospedales
OOD
82
1,404
0
10 Oct 2017
One-Shot Learning for Semantic Segmentation
One-Shot Learning for Semantic Segmentation
Amirreza Shaban
Shray Bansal
Ziqiang Liu
Irfan Essa
Byron Boots
SSeg
VLM
75
699
0
11 Sep 2017
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
João Carreira
Andrew Zisserman
194
7,961
0
22 May 2017
Prototypical Networks for Few-shot Learning
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
209
8,072
0
15 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
754
11,793
0
09 Mar 2017
Meta Networks
Meta Networks
Tsendsuren Munkhdalai
Hong-ye Yu
GNN
AI4CE
79
1,064
0
02 Mar 2017
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
80
2,000
0
14 Jun 2016
Matching Networks for One Shot Learning
Matching Networks for One Shot Learning
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
VLM
286
7,286
0
13 Jun 2016
Learning Temporal Regularity in Video Sequences
Learning Temporal Regularity in Video Sequences
Mahmudul Hasan
Jonghyun Choi
J. Neumann
Amit K. Roy-Chowdhury
L. Davis
111
1,096
0
15 Apr 2016
Learning Deep Representations of Appearance and Motion for Anomalous
  Event Detection
Learning Deep Representations of Appearance and Motion for Anomalous Event Detection
Dan Xu
Elisa Ricci
Yan Yan
Jingkuan Song
N. Sebe
109
512
0
06 Oct 2015
1