ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.06351
19
342

Anomaly Detection in Video Sequence with Appearance-Motion Correspondence

17 August 2019
Trong-Nguyen Nguyen
J. Meunier
ArXivPDFHTML
Abstract

Anomaly detection in surveillance videos is currently a challenge because of the diversity of possible events. We propose a deep convolutional neural network (CNN) that addresses this problem by learning a correspondence between common object appearances (e.g. pedestrian, background, tree, etc.) and their associated motions. Our model is designed as a combination of a reconstruction network and an image translation model that share the same encoder. The former sub-network determines the most significant structures that appear in video frames and the latter one attempts to associate motion templates to such structures. The training stage is performed using only videos of normal events and the model is then capable to estimate frame-level scores for an unknown input. The experiments on 6 benchmark datasets demonstrate the competitive performance of the proposed approach with respect to state-of-the-art methods.

View on arXiv
Comments on this paper