ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.12533
  4. Cited By
Pathways: Asynchronous Distributed Dataflow for ML

Pathways: Asynchronous Distributed Dataflow for ML

23 March 2022
P. Barham
Aakanksha Chowdhery
J. Dean
Sanjay Ghemawat
Steven Hand
Dan Hurt
Michael Isard
Hyeontaek Lim
Ruoming Pang
Sudip Roy
Brennan Saeta
Parker Schuh
Ryan Sepassi
Laurent El Shafey
C. A. Thekkath
Yonghui Wu
    GNN
    MoE
ArXivPDFHTML

Papers citing "Pathways: Asynchronous Distributed Dataflow for ML"

33 / 33 papers shown
Title
A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics
A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics
Kai He
Rui Mao
Qika Lin
Yucheng Ruan
Xiang Lan
Mengling Feng
Min Zhang
LM&MA
AILaw
154
166
0
28 Jan 2025
Revisiting Reliability in Large-Scale Machine Learning Research Clusters
Revisiting Reliability in Large-Scale Machine Learning Research Clusters
Apostolos Kokolis
Michael Kuchnik
John Hoffman
Adithya Kumar
Parth Malani
Faye Ma
Zachary DeVito
Siyang Song
Kalyan Saladi
Carole-Jean Wu
259
8
0
29 Oct 2024
Glauber Generative Model: Discrete Diffusion Models via Binary Classification
Glauber Generative Model: Discrete Diffusion Models via Binary Classification
Harshit Varma
Dheeraj M. Nagaraj
Karthikeyan Shanmugam
VLM
93
3
0
27 May 2024
FlexLLM: A System for Co-Serving Large Language Model Inference and Parameter-Efficient Finetuning
FlexLLM: A System for Co-Serving Large Language Model Inference and Parameter-Efficient Finetuning
Xupeng Miao
Gabriele Oliaro
Xinhao Cheng
Vineeth Kada
Ruohan Gao
...
April Yang
Yingcheng Wang
Mengdi Wu
Colin Unger
Zhihao Jia
MoE
112
10
0
29 Feb 2024
PaLM: Scaling Language Modeling with Pathways
PaLM: Scaling Language Modeling with Pathways
Aakanksha Chowdhery
Sharan Narang
Jacob Devlin
Maarten Bosma
Gaurav Mishra
...
Kathy Meier-Hellstern
Douglas Eck
J. Dean
Slav Petrov
Noah Fiedel
PILM
LRM
328
6,132
0
05 Apr 2022
ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep
  Learning
ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning
Samyam Rajbhandari
Olatunji Ruwase
Jeff Rasley
Shaden Smith
Yuxiong He
GNN
55
376
0
16 Apr 2021
Efficient Large-Scale Language Model Training on GPU Clusters Using
  Megatron-LM
Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM
Deepak Narayanan
Mohammad Shoeybi
Jared Casper
P. LeGresley
M. Patwary
...
Prethvi Kashinkunti
J. Bernauer
Bryan Catanzaro
Amar Phanishayee
Matei A. Zaharia
MoE
68
667
0
09 Apr 2021
Switch Transformers: Scaling to Trillion Parameter Models with Simple
  and Efficient Sparsity
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
W. Fedus
Barret Zoph
Noam M. Shazeer
MoE
55
2,136
0
11 Jan 2021
Nimble: Lightweight and Parallel GPU Task Scheduling for Deep Learning
Nimble: Lightweight and Parallel GPU Task Scheduling for Deep Learning
Woosuk Kwon
Gyeong-In Yu
Eunji Jeong
Byung-Gon Chun
36
68
0
04 Dec 2020
Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning
  Workloads
Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads
Deepak Narayanan
Keshav Santhanam
Fiodar Kazhamiaka
Amar Phanishayee
Matei A. Zaharia
34
207
0
20 Aug 2020
GShard: Scaling Giant Models with Conditional Computation and Automatic
  Sharding
GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
Dmitry Lepikhin
HyoukJoong Lee
Yuanzhong Xu
Dehao Chen
Orhan Firat
Yanping Huang
M. Krikun
Noam M. Shazeer
Zhiwen Chen
MoE
76
1,142
0
30 Jun 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
469
41,106
0
28 May 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
242
42,038
0
03 Dec 2019
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
  Transformer
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
Colin Raffel
Noam M. Shazeer
Adam Roberts
Katherine Lee
Sharan Narang
Michael Matena
Yanqi Zhou
Wei Li
Peter J. Liu
AIMat
260
19,824
0
23 Oct 2019
PipeMare: Asynchronous Pipeline Parallel DNN Training
PipeMare: Asynchronous Pipeline Parallel DNN Training
Bowen Yang
Jian Zhang
Jonathan Li
Christopher Ré
Christopher R. Aberger
Christopher De Sa
42
110
0
09 Oct 2019
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
Mohammad Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
283
1,861
0
17 Sep 2019
Themis: Fair and Efficient GPU Cluster Scheduling
Themis: Fair and Efficient GPU Cluster Scheduling
Kshiteej S. Mahajan
Arjun Balasubramanian
Arjun Singhvi
Shivaram Venkataraman
Aditya Akella
Amar Phanishayee
Shuchi Chawla
41
183
0
02 Jul 2019
Neural Message Passing for Multi-Label Classification
Neural Message Passing for Multi-Label Classification
Jack Lanchantin
Arshdeep Sekhon
Yanjun Qi
42
38
0
17 Apr 2019
TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine
  Learning
TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine Learning
Akshay Agrawal
A. Modi
Alexandre Passos
Allen Lavoie
Ashish Agarwal
...
Igor Ganichev
J. Levenberg
Mingsheng Hong
R. Monga
Shanqing Cai
57
79
0
27 Feb 2019
Parameter-Efficient Transfer Learning for NLP
Parameter-Efficient Transfer Learning for NLP
N. Houlsby
A. Giurgiu
Stanislaw Jastrzebski
Bruna Morrone
Quentin de Laroussilhe
Andrea Gesmundo
Mona Attariyan
Sylvain Gelly
179
4,368
0
02 Feb 2019
Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training
  Workloads
Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads
Myeongjae Jeon
Shivaram Venkataraman
Amar Phanishayee
Junjie Qian
Wencong Xiao
Fan Yang
GNN
53
353
0
17 Jan 2019
Measuring the Effects of Data Parallelism on Neural Network Training
Measuring the Effects of Data Parallelism on Neural Network Training
Christopher J. Shallue
Jaehoon Lee
J. Antognini
J. Mamou
J. Ketterling
Yao Wang
68
408
0
08 Nov 2018
Mesh-TensorFlow: Deep Learning for Supercomputers
Mesh-TensorFlow: Deep Learning for Supercomputers
Noam M. Shazeer
Youlong Cheng
Niki Parmar
Dustin Tran
Ashish Vaswani
...
HyoukJoong Lee
O. Milenkovic
C. Young
Ryan Sepassi
Blake Hechtman
GNN
MoE
AI4CE
49
387
0
05 Nov 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
943
93,936
0
11 Oct 2018
Dynamic Control Flow in Large-Scale Machine Learning
Dynamic Control Flow in Large-Scale Machine Learning
Yuan Yu
Martín Abadi
P. Barham
E. Brevdo
M. Burrows
...
Michael Isard
M. Kudlur
R. Monga
D. Murray
Xiaoqiang Zheng
AI4CE
50
106
0
04 May 2018
Shampoo: Preconditioned Stochastic Tensor Optimization
Shampoo: Preconditioned Stochastic Tensor Optimization
Vineet Gupta
Tomer Koren
Y. Singer
ODL
48
214
0
26 Feb 2018
Efficient Neural Architecture Search via Parameter Sharing
Efficient Neural Architecture Search via Parameter Sharing
Hieu H. Pham
M. Guan
Barret Zoph
Quoc V. Le
J. Dean
76
2,761
0
09 Feb 2018
Ray: A Distributed Framework for Emerging AI Applications
Ray: A Distributed Framework for Emerging AI Applications
Philipp Moritz
Robert Nishihara
Stephanie Wang
Alexey Tumanov
Richard Liaw
...
Melih Elibol
Zongheng Yang
William Paul
Michael I. Jordan
Ion Stoica
GNN
58
1,241
0
16 Dec 2017
Large Batch Training of Convolutional Networks
Large Batch Training of Convolutional Networks
Yang You
Igor Gitman
Boris Ginsburg
ODL
106
844
0
13 Aug 2017
Outrageously Large Neural Networks: The Sparsely-Gated
  Mixture-of-Experts Layer
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer
Noam M. Shazeer
Azalia Mirhoseini
Krzysztof Maziarz
Andy Davis
Quoc V. Le
Geoffrey E. Hinton
J. Dean
MoE
158
2,614
0
23 Jan 2017
Clipper: A Low-Latency Online Prediction Serving System
Clipper: A Low-Latency Online Prediction Serving System
D. Crankshaw
Xin Wang
Giulio Zhou
Michael Franklin
Joseph E. Gonzalez
Ion Stoica
50
673
0
09 Dec 2016
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
331
18,300
0
27 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
1