Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.10991
Cited By
Minimum Variance Unbiased N:M Sparsity for the Neural Gradients
21 March 2022
Brian Chmiel
Itay Hubara
Ron Banner
Daniel Soudry
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Minimum Variance Unbiased N:M Sparsity for the Neural Gradients"
25 / 25 papers shown
Title
Accelerating DNN Training with Structured Data Gradient Pruning
Bradley McDanel
Helia Dinh
J. Magallanes
59
7
0
01 Feb 2022
Sparse is Enough in Scaling Transformers
Sebastian Jaszczur
Aakanksha Chowdhery
Afroz Mohiuddin
Lukasz Kaiser
Wojciech Gajewski
Henryk Michalewski
Jonni Kanerva
MoE
56
102
0
24 Nov 2021
NxMTransformer: Semi-Structured Sparsification for Natural Language Understanding via ADMM
Connor Holmes
Minjia Zhang
Yuxiong He
Bo Wu
54
18
0
28 Oct 2021
Search Spaces for Neural Model Training
Darko Stosic
Dusan Stosic
60
4
0
27 May 2021
Accelerating Sparse Deep Neural Networks
Asit K. Mishra
J. Latorre
Jeff Pool
Darko Stosic
Dusan Stosic
Ganesh Venkatesh
Chong Yu
Paulius Micikevicius
158
235
0
16 Apr 2021
Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks
Itay Hubara
Brian Chmiel
Moshe Island
Ron Banner
S. Naor
Daniel Soudry
95
119
0
16 Feb 2021
Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch
Aojun Zhou
Yukun Ma
Junnan Zhu
Jianbo Liu
Zhijie Zhang
Kun Yuan
Wenxiu Sun
Hongsheng Li
201
247
0
08 Feb 2021
Differentiable Joint Pruning and Quantization for Hardware Efficiency
Ying Wang
Yadong Lu
Tijmen Blankevoort
MQ
58
72
0
20 Jul 2020
Neural gradients are near-lognormal: improved quantized and sparse training
Brian Chmiel
Liad Ben-Uri
Moran Shkolnik
Elad Hoffer
Ron Banner
Daniel Soudry
MQ
51
5
0
15 Jun 2020
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
267
387
0
05 Mar 2020
Sparse Weight Activation Training
Md Aamir Raihan
Tor M. Aamodt
91
73
0
07 Jan 2020
Rigging the Lottery: Making All Tickets Winners
Utku Evci
Trevor Gale
Jacob Menick
Pablo Samuel Castro
Erich Elsen
191
602
0
25 Nov 2019
Loss Aware Post-training Quantization
Yury Nahshan
Brian Chmiel
Chaim Baskin
Evgenii Zheltonozhskii
Ron Banner
A. Bronstein
A. Mendelson
MQ
77
166
0
17 Nov 2019
Learned Step Size Quantization
S. K. Esser
J. McKinstry
Deepika Bablani
R. Appuswamy
D. Modha
MQ
75
806
0
21 Feb 2019
Rethinking the Value of Network Pruning
Zhuang Liu
Mingjie Sun
Tinghui Zhou
Gao Huang
Trevor Darrell
36
1,470
0
11 Oct 2018
Learning to Quantize Deep Networks by Optimizing Quantization Intervals with Task Loss
S. Jung
Changyong Son
Seohyung Lee
JinWoo Son
Youngjun Kwak
Jae-Joon Han
Sung Ju Hwang
Changkyu Choi
MQ
48
375
0
17 Aug 2018
Bridging the Accuracy Gap for 2-bit Quantized Neural Networks (QNN)
Jungwook Choi
P. Chuang
Zhuo Wang
Swagath Venkataramani
Vijayalakshmi Srinivasan
K. Gopalakrishnan
MQ
42
76
0
17 Jul 2018
Scalable Methods for 8-bit Training of Neural Networks
Ron Banner
Itay Hubara
Elad Hoffer
Daniel Soudry
MQ
84
339
0
25 May 2018
PACT: Parameterized Clipping Activation for Quantized Neural Networks
Jungwook Choi
Zhuo Wang
Swagath Venkataramani
P. Chuang
Vijayalakshmi Srinivasan
K. Gopalakrishnan
MQ
62
953
0
16 May 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
233
3,473
0
09 Mar 2018
ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression
Jian-Hao Luo
Jianxin Wu
Weiyao Lin
58
1,760
0
20 Jul 2017
meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting
Xu Sun
Xuancheng Ren
Shuming Ma
Houfeng Wang
62
157
0
19 Jun 2017
Pruning Filters for Efficient ConvNets
Hao Li
Asim Kadav
Igor Durdanovic
H. Samet
H. Graf
3DPC
193
3,697
0
31 Aug 2016
Learning Structured Sparsity in Deep Neural Networks
W. Wen
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Helen Li
178
2,339
0
12 Aug 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
246
3,216
0
15 Jun 2016
1