ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.09724
  4. Cited By
Rethinking the optimization process for self-supervised model-driven MRI
  reconstruction

Rethinking the optimization process for self-supervised model-driven MRI reconstruction

18 March 2022
Weijian Huang
Cheng Li
Wenxin Fan
Yongjin Zhou
Qiegen Liu
Hairong Zheng
Shanshan Wang
ArXivPDFHTML

Papers citing "Rethinking the optimization process for self-supervised model-driven MRI reconstruction"

11 / 11 papers shown
Title
Self-Supervised Learning for MRI Reconstruction with a Parallel Network
  Training Framework
Self-Supervised Learning for MRI Reconstruction with a Parallel Network Training Framework
Chenwenbao Hu
Cheng Li
Haifeng Wang
Qiegen Liu
Hairong Zheng
Shanshan Wang
OOD
152
45
0
26 Sep 2021
Noise2Void - Learning Denoising from Single Noisy Images
Noise2Void - Learning Denoising from Single Noisy Images
Alexander Krull
T. Buchholz
Florian Jug
91
1,099
0
27 Nov 2018
fastMRI: An Open Dataset and Benchmarks for Accelerated MRI
fastMRI: An Open Dataset and Benchmarks for Accelerated MRI
Jure Zbontar
Florian Knoll
Anuroop Sriram
Tullie Murrell
Zhengnan Huang
...
Erich Owens
C. L. Zitnick
M. Recht
D. Sodickson
Yvonne W. Lui
OOD
54
836
0
21 Nov 2018
k-Space Deep Learning for Accelerated MRI
k-Space Deep Learning for Accelerated MRI
Yoseob Han
Leonard Sunwoo
J. C. Ye
85
188
0
10 May 2018
Deep Residual Learning for Accelerated MRI using Magnitude and Phase
  Networks
Deep Residual Learning for Accelerated MRI using Magnitude and Phase Networks
Dongwook Lee
Jaejun Yoo
S. Tak
J. C. Ye
OOD
48
297
0
02 Apr 2018
Noise2Noise: Learning Image Restoration without Clean Data
Noise2Noise: Learning Image Restoration without Clean Data
J. Lehtinen
Jacob Munkberg
J. Hasselgren
S. Laine
Tero Karras
M. Aittala
Timo Aila
67
1,591
0
12 Mar 2018
MoDL: Model Based Deep Learning Architecture for Inverse Problems
MoDL: Model Based Deep Learning Architecture for Inverse Problems
H. Aggarwal
M. Mani
M. Jacob
110
1,013
0
07 Dec 2017
Convolutional Recurrent Neural Networks for Dynamic MR Image
  Reconstruction
Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction
C. Qin
Jo Schlemper
Jose Caballero
Anthony N. Price
Joseph V. Hajnal
Daniel Rueckert
MedIm
49
497
0
05 Dec 2017
Image reconstruction by domain transform manifold learning
Image reconstruction by domain transform manifold learning
Bo Zhu
Jeremiah Zhe Liu
Bruce Rosen
Matthew S. Rosen
79
1,525
0
28 Apr 2017
A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image
  Reconstruction
A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction
Jo Schlemper
Jose Caballero
Joseph V. Hajnal
Anthony N. Price
Daniel Rueckert
63
1,126
0
08 Apr 2017
Learning a Variational Network for Reconstruction of Accelerated MRI
  Data
Learning a Variational Network for Reconstruction of Accelerated MRI Data
Kerstin Hammernik
Teresa Klatzer
Erich Kobler
M. Recht
D. Sodickson
Thomas Pock
Florian Knoll
48
1,535
0
03 Apr 2017
1