ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.03779
18
188

k-Space Deep Learning for Accelerated MRI

10 May 2018
Yoseob Han
Leonard Sunwoo
J. C. Ye
ArXivPDFHTML
Abstract

The annihilating filter-based low-rank Hankel matrix approach (ALOHA) is one of the state-of-the-art compressed sensing approaches that directly interpolates the missing k-space data using low-rank Hankel matrix completion. The success of ALOHA is due to the concise signal representation in the k-space domain thanks to the duality between structured low-rankness in the k-space domain and the image domain sparsity. Inspired by the recent mathematical discovery that links convolutional neural networks to Hankel matrix decomposition using data-driven framelet basis, here we propose a fully data-driven deep learning algorithm for k-space interpolation. Our network can be also easily applied to non-Cartesian k-space trajectories by simply adding an additional regridding layer. Extensive numerical experiments show that the proposed deep learning method consistently outperforms the existing image-domain deep learning approaches.

View on arXiv
Comments on this paper