Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.08354
Cited By
Represent, Compare, and Learn: A Similarity-Aware Framework for Class-Agnostic Counting
16 March 2022
Min Shi
Hao Lu
Chen Feng
Chengxin Liu
Zhiguo Cao
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Represent, Compare, and Learn: A Similarity-Aware Framework for Class-Agnostic Counting"
9 / 59 papers shown
Title
Can SAM Count Anything? An Empirical Study on SAM Counting
Zhiheng Ma
Xiaopeng Hong
Qinnan Shangguan
VLM
132
19
0
21 Apr 2023
Density Map Distillation for Incremental Object Counting
Chenshen Wu
Joost van de Weijer
65
2
0
11 Apr 2023
Zero-shot Object Counting
Aoxiang Fan
Hieu M. Le
Vu Nguyen
Viresh Ranjan
Dimitris Samaras
98
46
0
03 Mar 2023
GCNet: Probing Self-Similarity Learning for Generalized Counting Network
Mingjie Wang
Yande Li
Jun Zhou
Graham W. Taylor
Minglun Gong
98
14
0
10 Feb 2023
A Unified Object Counting Network with Object Occupation Prior
Shengqin Jiang
Qing Wang
Fengna Cheng
Yuankai Qi
Qingshan Liu
99
7
0
29 Dec 2022
A Low-Shot Object Counting Network With Iterative Prototype Adaptation
Nikola Djukic
A. Lukežič
Vitjan Zavrtanik
Matej Kristan
89
50
0
15 Nov 2022
Novel 3D Scene Understanding Applications From Recurrence in a Single Image
Shimian Zhang
Skanda Bharadwaj
Keaton Kraiger
Yashasvi Asthana
Kuanqi Cai
R. Collins
Yanxi Liu
121
1
0
14 Oct 2022
Learning to Count Anything: Reference-less Class-agnostic Counting with Weak Supervision
Michael A. Hobley
V. Prisacariu
133
42
0
20 May 2022
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCL
SSL
352
4,110
0
17 Jun 2020
Previous
1
2