ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.10203
39
36

Learning to Count Anything: Reference-less Class-agnostic Counting with Weak Supervision

20 May 2022
Michael A. Hobley
V. Prisacariu
ArXivPDFHTML
Abstract

Current class-agnostic counting methods can generalise to unseen classes but usually require reference images to define the type of object to be counted, as well as instance annotations during training. Reference-less class-agnostic counting is an emerging field that identifies counting as, at its core, a repetition-recognition task. Such methods facilitate counting on a changing set composition. We show that a general feature space with global context can enumerate instances in an image without a prior on the object type present. Specifically, we demonstrate that regression from vision transformer features without point-level supervision or reference images is superior to other reference-less methods and is competitive with methods that use reference images. We show this on the current standard few-shot counting dataset FSC-147. We also propose an improved dataset, FSC-133, which removes errors, ambiguities, and repeated images from FSC-147 and demonstrate similar performance on it. To the best of our knowledge, we are the first weakly-supervised reference-less class-agnostic counting method.

View on arXiv
Comments on this paper