Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.07404
Cited By
Respecting causality is all you need for training physics-informed neural networks
14 March 2022
Sizhuang He
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Respecting causality is all you need for training physics-informed neural networks"
50 / 122 papers shown
Title
An operator preconditioning perspective on training in physics-informed machine learning
Tim De Ryck
Florent Bonnet
Siddhartha Mishra
Emmanuel de Bezenac
AI4CE
41
14
0
09 Oct 2023
Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology
Qingsong Xu
Yilei Shi
Jonathan Bamber
Ye Tuo
Ralf Ludwig
Xiao Xiang Zhu
AI4CE
20
10
0
08 Oct 2023
Investigating the Ability of PINNs To Solve Burgers' PDE Near Finite-Time BlowUp
Dibyakanti Kumar
Anirbit Mukherjee
31
2
0
08 Oct 2023
Randomized Sparse Neural Galerkin Schemes for Solving Evolution Equations with Deep Networks
Jules Berman
Benjamin Peherstorfer
26
13
0
07 Oct 2023
Spectral operator learning for parametric PDEs without data reliance
Junho Choi
Taehyun Yun
Namjung Kim
Youngjoon Hong
19
8
0
03 Oct 2023
Improving physics-informed DeepONets with hard constraints
Rudiger Brecht
D. Popovych
Alexander Bihlo
R. Popovych
AI4CE
18
8
0
14 Sep 2023
Physics-Informed Neural Networks for an optimal counterdiabatic quantum computation
Antonio Ferrer-Sánchez
Carlos Flores-Garrigós
C. Hernani-Morales
José J. Orquín-Marqués
N. N. Hegade
Alejandro Gomez Cadavid
Iraitz Montalban
Enrique Solano
Yolanda Vives-Gilabert
J. D. Martín-Guerrero
32
2
0
08 Sep 2023
Neural oscillators for generalization of physics-informed machine learning
Taniya Kapoor
Abhishek Chandra
D. Tartakovsky
Hongrui Wang
Alfredo Núñez
R. Dollevoet
AI4CE
29
11
0
17 Aug 2023
An Expert's Guide to Training Physics-informed Neural Networks
Sizhuang He
Shyam Sankaran
Hanwen Wang
P. Perdikaris
PINN
28
97
0
16 Aug 2023
A Sequential Meta-Transfer (SMT) Learning to Combat Complexities of Physics-Informed Neural Networks: Application to Composites Autoclave Processing
Milad Ramezankhani
A. Milani
PINN
24
4
0
12 Aug 2023
Learning Specialized Activation Functions for Physics-informed Neural Networks
Honghui Wang
Lu Lu
Shiji Song
Gao Huang
PINN
AI4CE
16
11
0
08 Aug 2023
Residual-based attention and connection to information bottleneck theory in PINNs
Sokratis J. Anagnostopoulos
Juan Diego Toscano
Nikos Stergiopulos
George Karniadakis
25
20
0
01 Jul 2023
Parameter Identification for Partial Differential Equations with Spatiotemporal Varying Coefficients
Guangtao Zhang
Yiting Duan
Guanyu Pan
Qijing Chen
Huiyu Yang
Zhikun Zhang
17
0
0
30 Jun 2023
Separable Physics-Informed Neural Networks
Junwoo Cho
Seungtae Nam
Hyunmo Yang
S. Yun
Youngjoon Hong
Eunbyung Park
PINN
AI4CE
17
43
0
28 Jun 2023
PINNacle: A Comprehensive Benchmark of Physics-Informed Neural Networks for Solving PDEs
Zhongkai Hao
J. Yao
Chang Su
Hang Su
Ziao Wang
...
Zeyu Xia
Yichi Zhang
Songming Liu
Lu Lu
Jun Zhu
PINN
29
30
0
15 Jun 2023
Data driven localized wave solution of the Fokas-Lenells equation using modified PINN
G. K. Saharia
Sagardeep Talukdar
Riki Dutta
S. Nandy
13
1
0
03 Jun 2023
Scalable Transformer for PDE Surrogate Modeling
Zijie Li
Dule Shu
A. Farimani
35
67
0
27 May 2023
Learning from Integral Losses in Physics Informed Neural Networks
Ehsan Saleh
Saba Ghaffari
Timothy Bretl
Luke N. Olson
Matthew West
PINN
AI4CE
30
4
0
27 May 2023
Reconstruction, forecasting, and stability of chaotic dynamics from partial data
Elise Özalp
G. Margazoglou
Luca Magri
AI4TS
18
10
0
24 May 2023
ParticleWNN: a Novel Neural Networks Framework for Solving Partial Differential Equations
Yaohua Zang
Gang Bao
29
4
0
21 May 2023
LatentPINNs: Generative physics-informed neural networks via a latent representation learning
M. H. Taufik
T. Alkhalifah
AI4CE
DiffM
49
4
0
11 May 2023
Neural Steerer: Novel Steering Vector Synthesis with a Causal Neural Field over Frequency and Source Positions
Diego Di Carlo
Aditya Arie Nugraha
Mathieu Fontaine
Yoshiaki Bando
Kazuyoshi Yoshii
LLMSV
24
0
0
08 May 2023
M-ENIAC: A machine learning recreation of the first successful numerical weather forecasts
Rudiger Brecht
Alexander Bihlo
29
4
0
18 Apr 2023
Microseismic source imaging using physics-informed neural networks with hard constraints
Xinquan Huang
T. Alkhalifah
34
7
0
09 Apr 2023
About optimal loss function for training physics-informed neural networks under respecting causality
V. A. Es'kin
Danil V. Davydov
Ekaterina D. Egorova
Alexey O. Malkhanov
Mikhail A. Akhukov
Mikhail E. Smorkalov
PINN
16
7
0
05 Apr 2023
GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs
Yanlai Chen
Shawn Koohy
PINN
AI4CE
37
24
0
27 Mar 2023
Improving physics-informed neural networks with meta-learned optimization
Alexander Bihlo
PINN
36
18
0
13 Mar 2023
MetaPhysiCa: OOD Robustness in Physics-informed Machine Learning
S Chandra Mouli
M. A. Alam
Bruno Ribeiro
OOD
29
4
0
06 Mar 2023
A unified scalable framework for causal sweeping strategies for Physics-Informed Neural Networks (PINNs) and their temporal decompositions
Michael Penwarden
Ameya Dilip Jagtap
Shandian Zhe
George Karniadakis
Robert M. Kirby
PINN
AI4CE
23
57
0
28 Feb 2023
Achieving High Accuracy with PINNs via Energy Natural Gradients
Johannes Müller
Marius Zeinhofer
13
4
0
25 Feb 2023
On the Generalization of PINNs outside the training domain and the Hyperparameters influencing it
Andrea Bonfanti
Roberto Santana
M. Ellero
Babak Gholami
AI4CE
PINN
43
3
0
15 Feb 2023
Failure-informed adaptive sampling for PINNs, Part II: combining with re-sampling and subset simulation
Zhi-Hao Gao
Tao Tang
Liang Yan
Tao Zhou
37
18
0
03 Feb 2023
LSA-PINN: Linear Boundary Connectivity Loss for Solving PDEs on Complex Geometry
Jian Cheng Wong
P. Chiu
C. Ooi
M. Dao
Yew-Soon Ong
AI4CE
PINN
22
10
0
03 Feb 2023
Neural Control of Parametric Solutions for High-dimensional Evolution PDEs
Nathan Gaby
X. Ye
Haomin Zhou
13
6
0
31 Jan 2023
Spatio-Temporal Super-Resolution of Dynamical Systems using Physics-Informed Deep-Learning
Rajat Arora
Ankit Shrivastava
AI4CE
36
4
0
08 Dec 2022
Bayesian Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires
J. Dabrowski
D. Pagendam
J. Hilton
Conrad Sanderson
Dan MacKinlay
C. Huston
Andrew Bolt
Petra Kuhnert
PINN
33
17
0
02 Dec 2022
VI-PINNs: Variance-involved Physics-informed Neural Networks for Fast and Accurate Prediction of Partial Differential Equations
Bin Shan
Ye Li
Sheng-Jun Huang
PINN
26
2
0
30 Nov 2022
Physics-informed Neural Networks with Unknown Measurement Noise
Philipp Pilar
Niklas Wahlström
PINN
23
6
0
28 Nov 2022
Neural tangent kernel analysis of PINN for advection-diffusion equation
M. Saadat
B. Gjorgiev
L. Das
G. Sansavini
33
0
0
21 Nov 2022
Convergence analysis of unsupervised Legendre-Galerkin neural networks for linear second-order elliptic PDEs
Seungchan Ko
S. Yun
Youngjoon Hong
17
5
0
16 Nov 2022
Separable PINN: Mitigating the Curse of Dimensionality in Physics-Informed Neural Networks
Junwoo Cho
Seungtae Nam
Hyunmo Yang
S. Yun
Youngjoon Hong
Eunbyung Park
PINN
AI4CE
23
8
0
16 Nov 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
35
89
0
15 Nov 2022
Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh
Tian Qin
Alex Beatson
Deniz Oktay
N. McGreivy
Ryan P. Adams
AI4CE
19
10
0
03 Nov 2022
SeismicNet: Physics-informed neural networks for seismic wave modeling in semi-infinite domain
Pu Ren
Chengping Rao
Su Chen
Jian-Xun Wang
Hao Sun
Yang Liu
44
41
0
25 Oct 2022
A Novel Adaptive Causal Sampling Method for Physics-Informed Neural Networks
Jia Guo
Haifeng Wang
Chenping Hou
11
7
0
24 Oct 2022
Robust Regression with Highly Corrupted Data via Physics Informed Neural Networks
Wei Peng
Wenjuan Yao
Weien Zhou
Xiaoya Zhang
Weijie Yao
PINN
50
5
0
19 Oct 2022
Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural Networks on Coupled Ordinary Differential Equations
Alexander New
B. Eng
A. Timm
A. Gearhart
20
4
0
14 Oct 2022
Random Weight Factorization Improves the Training of Continuous Neural Representations
Sizhuang He
Hanwen Wang
Jacob H. Seidman
P. Perdikaris
26
10
0
03 Oct 2022
Failure-informed adaptive sampling for PINNs
Zhiwei Gao
Liang Yan
Tao Zhou
18
77
0
01 Oct 2022
Residual-Quantile Adjustment for Adaptive Training of Physics-informed Neural Network
Jiayue Han
Zhiqiang Cai
Zhiyou Wu
Xiang Zhou
44
7
0
09 Sep 2022
Previous
1
2
3
Next