Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.06176
Cited By
More Than a Toy: Random Matrix Models Predict How Real-World Neural Representations Generalize
11 March 2022
Alexander Wei
Wei Hu
Jacob Steinhardt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"More Than a Toy: Random Matrix Models Predict How Real-World Neural Representations Generalize"
27 / 27 papers shown
Title
Supervised Models Can Generalize Also When Trained on Random Labels
Oskar Allerbo
Thomas B. Schön
OOD
SSL
34
0
0
16 May 2025
Training NTK to Generalize with KARE
Johannes Schwab
Bryan Kelly
Semyon Malamud
Teng Andrea Xu
32
0
0
16 May 2025
A theoretical framework for overfitting in energy-based modeling
Giovanni Catania
A. Decelle
Cyril Furtlehner
Beatriz Seoane
69
2
0
31 Jan 2025
A High Dimensional Statistical Model for Adversarial Training: Geometry and Trade-Offs
Kasimir Tanner
Matteo Vilucchio
Bruno Loureiro
Florent Krzakala
AAML
70
0
0
31 Dec 2024
High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws
M. E. Ildiz
Halil Alperen Gozeten
Ege Onur Taga
Marco Mondelli
Samet Oymak
69
2
0
24 Oct 2024
Provable Weak-to-Strong Generalization via Benign Overfitting
David X. Wu
A. Sahai
79
6
0
06 Oct 2024
How Feature Learning Can Improve Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
Cengiz Pehlevan
59
13
0
26 Sep 2024
Breaking Neural Network Scaling Laws with Modularity
Akhilan Boopathy
Sunshine Jiang
William Yue
Jaedong Hwang
Abhiram Iyer
Ila Fiete
OOD
62
2
0
09 Sep 2024
Overfitting Behaviour of Gaussian Kernel Ridgeless Regression: Varying Bandwidth or Dimensionality
Marko Medvedev
Gal Vardi
Nathan Srebro
70
3
0
05 Sep 2024
Parameter-Efficient Fine-Tuning for Continual Learning: A Neural Tangent Kernel Perspective
Jingren Liu
Zhong Ji
YunLong Yu
Jiale Cao
Yanwei Pang
Jungong Han
Xuelong Li
CLL
46
5
0
24 Jul 2024
Scaling Laws in Linear Regression: Compute, Parameters, and Data
Licong Lin
Jingfeng Wu
Sham Kakade
Peter L. Bartlett
Jason D. Lee
LRM
49
15
0
12 Jun 2024
NTK-Guided Few-Shot Class Incremental Learning
Jingren Liu
Zhong Ji
Yanwei Pang
YunLong Yu
CLL
47
3
0
19 Mar 2024
Active Few-Shot Fine-Tuning
Jonas Hübotter
Bhavya Sukhija
Lenart Treven
Yarden As
Andreas Krause
48
1
0
13 Feb 2024
Robust Linear Regression: Phase-Transitions and Precise Tradeoffs for General Norms
Elvis Dohmatob
M. Scetbon
AAML
OOD
30
0
0
01 Aug 2023
Precise Asymptotic Generalization for Multiclass Classification with Overparameterized Linear Models
David X. Wu
A. Sahai
29
2
0
23 Jun 2023
Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation
Jin-Hong Du
Pratik V. Patil
Arun K. Kuchibhotla
37
11
0
25 Apr 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
42
30
0
27 Mar 2023
Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation
Yilin Yang
Kamil Adamczewski
Danica J. Sutherland
Xiaoxiao Li
Mijung Park
38
14
0
03 Mar 2023
Spectral Evolution and Invariance in Linear-width Neural Networks
Zhichao Wang
A. Engel
Anand D. Sarwate
Ioana Dumitriu
Tony Chiang
45
14
0
11 Nov 2022
A picture of the space of typical learnable tasks
Rahul Ramesh
Jialin Mao
Itay Griniasty
Rubing Yang
H. Teoh
Mark K. Transtrum
James P. Sethna
Pratik Chaudhari
SSL
DRL
46
5
0
31 Oct 2022
A Solvable Model of Neural Scaling Laws
A. Maloney
Daniel A. Roberts
J. Sully
52
51
0
30 Oct 2022
A Kernel-Based View of Language Model Fine-Tuning
Sadhika Malladi
Alexander Wettig
Dingli Yu
Danqi Chen
Sanjeev Arora
VLM
78
63
0
11 Oct 2022
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
35
20
0
25 Jun 2022
Universal characteristics of deep neural network loss surfaces from random matrix theory
Nicholas P. Baskerville
J. Keating
F. Mezzadri
J. Najnudel
Diego Granziol
37
4
0
17 May 2022
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
32
250
0
12 Feb 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
266
4,532
0
23 Jan 2020
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
127
577
0
27 Feb 2015
1