Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.02094
Cited By
LiteTransformerSearch: Training-free Neural Architecture Search for Efficient Language Models
4 March 2022
Mojan Javaheripi
Gustavo de Rosa
Subhabrata Mukherjee
S. Shah
Tomasz Religa
C. C. T. Mendes
Sébastien Bubeck
F. Koushanfar
Debadeepta Dey
Re-assign community
ArXiv
PDF
HTML
Papers citing
"LiteTransformerSearch: Training-free Neural Architecture Search for Efficient Language Models"
7 / 7 papers shown
Title
Variation Matters: from Mitigating to Embracing Zero-Shot NAS Ranking Function Variation
Pavel Rumiantsev
Mark Coates
55
0
0
27 Feb 2025
Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers
Yi Tay
Mostafa Dehghani
J. Rao
W. Fedus
Samira Abnar
Hyung Won Chung
Sharan Narang
Dani Yogatama
Ashish Vaswani
Donald Metzler
206
111
0
22 Sep 2021
Primer: Searching for Efficient Transformers for Language Modeling
David R. So
Wojciech Mañke
Hanxiao Liu
Zihang Dai
Noam M. Shazeer
Quoc V. Le
VLM
91
153
0
17 Sep 2021
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
Leo Gao
Stella Biderman
Sid Black
Laurence Golding
Travis Hoppe
...
Horace He
Anish Thite
Noa Nabeshima
Shawn Presser
Connor Leahy
AIMat
282
2,007
0
31 Dec 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
264
4,532
0
23 Jan 2020
Efficient Multi-objective Neural Architecture Search via Lamarckian Evolution
T. Elsken
J. H. Metzen
Frank Hutter
131
499
0
24 Apr 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
304
6,996
0
20 Apr 2018
1