ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.02057
  4. Cited By
Interpretable Latent Variables in Deep State Space Models
v1v2 (latest)

Interpretable Latent Variables in Deep State Space Models

3 March 2022
Haoxuan Wu
David S. Matteson
M. Wells
    BDLAI4TS
ArXiv (abs)PDFHTML

Papers citing "Interpretable Latent Variables in Deep State Space Models"

26 / 26 papers shown
Title
Deep State-Space Generative Model For Correlated Time-to-Event
  Predictions
Deep State-Space Generative Model For Correlated Time-to-Event Predictions
Yuan Xue
Denny Zhou
Nan Du
Andrew M. Dai
Zhen Xu
Kun Zhang
Claire Cui
118
8
0
28 Jul 2024
Learning Interpretable Deep State Space Model for Probabilistic Time
  Series Forecasting
Learning Interpretable Deep State Space Model for Probabilistic Time Series Forecasting
Longyuan Li
Junchi Yan
Xiaokang Yang
Yaohui Jin
OODBDLAI4TS
80
63
0
31 Jan 2021
Deep State Space Models for Nonlinear System Identification
Deep State Space Models for Nonlinear System Identification
Daniel Gedon
Niklas Wahlström
Thomas B. Schon
L. Ljung
43
88
0
31 Mar 2020
Temporal Fusion Transformers for Interpretable Multi-horizon Time Series
  Forecasting
Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting
Bryan Lim
Sercan O. Arik
Nicolas Loeff
Tomas Pfister
AI4TS
118
1,469
0
19 Dec 2019
Horseshoe Regularization for Machine Learning in Complex and Deep Models
Horseshoe Regularization for Machine Learning in Complex and Deep Models
A. Bhadra
J. Datta
Yunfan Li
Nicholas G. Polson
46
15
0
24 Apr 2019
Structured Variational Learning of Bayesian Neural Networks with
  Horseshoe Priors
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors
S. Ghosh
Jiayu Yao
Finale Doshi-Velez
BDLUQCV
48
78
0
13 Jun 2018
Forecasting Economics and Financial Time Series: ARIMA vs. LSTM
Forecasting Economics and Financial Time Series: ARIMA vs. LSTM
Sima Siami‐Namini
A. Namin
AI4TS
58
226
0
16 Mar 2018
Z-Forcing: Training Stochastic Recurrent Networks
Z-Forcing: Training Stochastic Recurrent Networks
Anirudh Goyal
Alessandro Sordoni
Marc-Alexandre Côté
Nan Rosemary Ke
Yoshua Bengio
BDL
70
185
0
15 Nov 2017
The Inverse Gamma-Gamma Prior for Optimal Posterior Contraction and Multiple Hypothesis Testing
Ray Bai
M. Ghosh
33
7
0
12 Oct 2017
Model Selection in Bayesian Neural Networks via Horseshoe Priors
Model Selection in Bayesian Neural Networks via Horseshoe Priors
S. Ghosh
Finale Doshi-Velez
BDL
67
120
0
29 May 2017
Bayesian Compression for Deep Learning
Bayesian Compression for Deep Learning
Christos Louizos
Karen Ullrich
Max Welling
UQCVBDL
166
481
0
24 May 2017
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
David Salinas
Valentin Flunkert
Jan Gasthaus
AI4TSUQCVBDL
81
2,123
0
13 Apr 2017
Multiplicative Normalizing Flows for Variational Bayesian Neural
  Networks
Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
Christos Louizos
Max Welling
BDL
152
462
0
06 Mar 2017
PixelVAE: A Latent Variable Model for Natural Images
PixelVAE: A Latent Variable Model for Natural Images
Ishaan Gulrajani
Kundan Kumar
Faruk Ahmed
Adrien Ali Taïga
Francesco Visin
David Vazquez
Aaron Courville
DRLSSLBDL
80
340
0
15 Nov 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRLSSLGAN
152
676
0
08 Nov 2016
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
93
459
0
30 Sep 2016
Sequential Neural Models with Stochastic Layers
Sequential Neural Models with Stochastic Layers
Marco Fraccaro
Søren Kaae Sønderby
Ulrich Paquet
Ole Winther
BDL
117
398
0
24 May 2016
Deep Variational Bayes Filters: Unsupervised Learning of State Space
  Models from Raw Data
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
Maximilian Karl
Maximilian Sölch
Justin Bayer
Patrick van der Smagt
BDL
53
0
0
20 May 2016
Variational Inference for Sparse and Undirected Models
Variational Inference for Sparse and Undirected Models
John Ingraham
D. Marks
90
8
0
11 Feb 2016
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
113
2,364
0
19 Nov 2015
Deep Kalman Filters
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDLAI4TS
73
374
0
16 Nov 2015
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRLBDL
90
1,261
0
07 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
318
4,197
0
21 May 2015
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
  Modeling
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
Junyoung Chung
Çağlar Gülçehre
Kyunghyun Cho
Yoshua Bengio
598
12,734
0
11 Dec 2014
Learning Stochastic Recurrent Networks
Learning Stochastic Recurrent Networks
Justin Bayer
Christian Osendorfer
BDL
78
274
0
27 Nov 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
1