ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.01928
  4. Cited By
Label-Free Explainability for Unsupervised Models
v1v2v3 (latest)

Label-Free Explainability for Unsupervised Models

3 March 2022
Jonathan Crabbé
M. Schaar
    FAttMILM
ArXiv (abs)PDFHTML

Papers citing "Label-Free Explainability for Unsupervised Models"

37 / 37 papers shown
Title
Explaining Latent Representations with a Corpus of Examples
Explaining Latent Representations with a Corpus of Examples
Jonathan Crabbé
Zhaozhi Qian
F. Imrie
M. Schaar
FAtt
59
38
0
28 Oct 2021
Explaining Time Series Predictions with Dynamic Masks
Explaining Time Series Predictions with Dynamic Masks
Jonathan Crabbé
M. Schaar
FAttAI4TS
90
81
0
09 Jun 2021
Understanding Instance-based Interpretability of Variational
  Auto-Encoders
Understanding Instance-based Interpretability of Variational Auto-Encoders
Zhifeng Kong
Kamalika Chaudhuri
TDI
63
28
0
29 May 2021
Learning outside the Black-Box: The pursuit of interpretable models
Learning outside the Black-Box: The pursuit of interpretable models
Jonathan Crabbé
Yao Zhang
W. Zame
M. Schaar
35
24
0
17 Nov 2020
Captum: A unified and generic model interpretability library for PyTorch
Captum: A unified and generic model interpretability library for PyTorch
Narine Kokhlikyan
Vivek Miglani
Miguel Martin
Edward Wang
B. Alsallakh
...
Alexander Melnikov
Natalia Kliushkina
Carlos Araya
Siqi Yan
Orion Reblitz-Richardson
FAtt
144
846
0
16 Sep 2020
Opportunities and Challenges in Explainable Artificial Intelligence
  (XAI): A Survey
Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey
Arun Das
P. Rad
XAI
158
604
0
16 Jun 2020
Supervised Contrastive Learning
Supervised Contrastive Learning
Prannay Khosla
Piotr Teterwak
Chen Wang
Aaron Sarna
Yonglong Tian
Phillip Isola
Aaron Maschinot
Ce Liu
Dilip Krishnan
SSL
165
4,572
0
23 Apr 2020
Building and Interpreting Deep Similarity Models
Building and Interpreting Deep Similarity Models
Oliver Eberle
Jochen Büttner
Florian Kräutli
K. Müller
Matteo Valleriani
G. Montavon
56
58
0
11 Mar 2020
A Distributional Framework for Data Valuation
A Distributional Framework for Data Valuation
Amirata Ghorbani
Michael P. Kim
James Zou
TDI
52
132
0
27 Feb 2020
Estimating Training Data Influence by Tracing Gradient Descent
Estimating Training Data Influence by Tracing Gradient Descent
G. Pruthi
Frederick Liu
Mukund Sundararajan
Satyen Kale
TDI
99
417
0
19 Feb 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
510
10,591
0
17 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
378
18,866
0
13 Feb 2020
Inference with Deep Generative Priors in High Dimensions
Inference with Deep Generative Priors in High Dimensions
Jillian R. Fisher
Mojtaba Sahraee-Ardakan
S. Rangan
Zaid Harchaoui
Yejin Choi
BDL
51
47
0
08 Nov 2019
Concept Saliency Maps to Visualize Relevant Features in Deep Generative
  Models
Concept Saliency Maps to Visualize Relevant Features in Deep Generative Models
L. Brocki
N. C. Chung
FAtt
45
21
0
29 Oct 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
127
6,293
0
22 Oct 2019
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical
  XAI
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
Erico Tjoa
Cuntai Guan
XAI
112
1,451
0
17 Jul 2019
Learning Interpretable Disentangled Representations using Adversarial
  VAEs
Learning Interpretable Disentangled Representations using Adversarial VAEs
Mhd Hasan Sarhan
Abouzar Eslami
Nassir Navab
Shadi Albarqouni
DRLOOD
128
21
0
17 Apr 2019
Data Shapley: Equitable Valuation of Data for Machine Learning
Data Shapley: Equitable Valuation of Data for Machine Learning
Amirata Ghorbani
James Zou
TDIFedML
78
789
0
05 Apr 2019
Self-supervised Visual Feature Learning with Deep Neural Networks: A
  Survey
Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey
Longlong Jing
Yingli Tian
SSL
159
1,700
0
16 Feb 2019
Representer Point Selection for Explaining Deep Neural Networks
Representer Point Selection for Explaining Deep Neural Networks
Chih-Kuan Yeh
Joon Sik Kim
Ian En-Hsu Yen
Pradeep Ravikumar
TDI
79
253
0
23 Nov 2018
A Benchmark for Interpretability Methods in Deep Neural Networks
A Benchmark for Interpretability Methods in Deep Neural Networks
Sara Hooker
D. Erhan
Pieter-Jan Kindermans
Been Kim
FAttUQCV
118
683
0
28 Jun 2018
Understanding disentangling in $β$-VAE
Understanding disentangling in βββ-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGeDRL
71
831
0
10 Apr 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust
  Deep Learning
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OODAAML
149
508
0
13 Mar 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
227
1,850
0
30 Nov 2017
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
129
2,361
0
01 Nov 2017
Recent Trends in Deep Learning Based Natural Language Processing
Recent Trends in Deep Learning Based Natural Language Processing
Tom Young
Devamanyu Hazarika
Soujanya Poria
Min Zhang
75
2,835
0
09 Aug 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
293
2,267
0
24 Jun 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,018
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAttAAML
76
1,525
0
11 Apr 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
203
3,881
0
10 Apr 2017
Understanding Black-box Predictions via Influence Functions
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
216
2,905
0
14 Mar 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
193
6,018
0
04 Mar 2017
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
183
3,706
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,033
0
16 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
314
7,316
0
20 Dec 2013
1