ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.01874
  4. Cited By
Thermodynamics-informed graph neural networks
v1v2v3 (latest)

Thermodynamics-informed graph neural networks

3 March 2022
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
    AI4CEPINN
ArXiv (abs)PDFHTML

Papers citing "Thermodynamics-informed graph neural networks"

30 / 30 papers shown
Title
GFINNs: GENERIC Formalism Informed Neural Networks for Deterministic and
  Stochastic Dynamical Systems
GFINNs: GENERIC Formalism Informed Neural Networks for Deterministic and Stochastic Dynamical Systems
Zhen Zhang
Yeonjong Shin
George Karniadakis
AI4CE
66
53
0
31 Aug 2021
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent
  Dynamical Systems
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems
Shaan Desai
M. Mattheakis
David Sondak
P. Protopapas
Stephen J. Roberts
AI4CE
75
47
0
16 Jul 2021
Physics perception in sloshing scenes with guaranteed thermodynamic
  consistency
Physics perception in sloshing scenes with guaranteed thermodynamic consistency
B. Moya
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
59
14
0
24 Jun 2021
Machine learning structure preserving brackets for forecasting
  irreversible processes
Machine learning structure preserving brackets for forecasting irreversible processes
Kookjin Lee
Nathaniel Trask
P. Stinis
AI4CE
84
46
0
23 Jun 2021
ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations
ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations
Weihua Hu
Muhammed Shuaibi
Abhishek Das
Siddharth Goyal
Anuroop Sriram
J. Leskovec
Devi Parikh
C. L. Zitnick
GNNAI4CE
88
70
0
02 Mar 2021
A Deep Emulator for Secondary Motion of 3D Characters
A Deep Emulator for Secondary Motion of 3D Characters
Mianlun Zheng
Yi Zhou
Duygu Ceylan
J. Barbič
3DH
51
27
0
01 Mar 2021
E(n) Equivariant Graph Neural Networks
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
113
1,033
0
19 Feb 2021
Learning Mesh-Based Simulation with Graph Networks
Learning Mesh-Based Simulation with Graph Networks
Tobias Pfaff
Meire Fortunato
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
AI4CE
82
804
0
07 Oct 2020
Deep learning of thermodynamics-aware reduced-order models from data
Deep learning of thermodynamics-aware reduced-order models from data
Quercus Hernandez
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
PINNAI4CE
55
80
0
03 Jul 2020
Discovering Symbolic Models from Deep Learning with Inductive Biases
Discovering Symbolic Models from Deep Learning with Inductive Biases
M. Cranmer
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Rui Xu
Kyle Cranmer
D. Spergel
S. Ho
AI4CE
75
481
0
19 Jun 2020
Structure-preserving neural networks
Structure-preserving neural networks
Quercus Hernandez
Alberto Badías
D. González
Francisco Chinesta
Elías Cueto
PINN
119
71
0
09 Apr 2020
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
Weijing Shi
Ragunathan
R. Rajkumar
3DPC
226
745
0
02 Mar 2020
Learning to Simulate Complex Physics with Graph Networks
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINNAI4CE
145
1,101
0
21 Feb 2020
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
209
225
0
29 Sep 2019
Hamiltonian Graph Networks with ODE Integrators
Hamiltonian Graph Networks with ODE Integrators
Alvaro Sanchez-Gonzalez
V. Bapst
Kyle Cranmer
Peter W. Battaglia
AI4CE
99
179
0
27 Sep 2019
Mish: A Self Regularized Non-Monotonic Activation Function
Mish: A Self Regularized Non-Monotonic Activation Function
Diganta Misra
80
679
0
23 Aug 2019
Hamiltonian Neural Networks
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINNAI4CE
118
899
0
04 Jun 2019
Universal Invariant and Equivariant Graph Neural Networks
Universal Invariant and Equivariant Graph Neural Networks
Nicolas Keriven
Gabriel Peyré
196
294
0
13 May 2019
Graph U-Nets
Graph U-Nets
Hongyang Gao
Shuiwang Ji
AI4CESSLSSegGNN
132
1,092
0
11 May 2019
ST-UNet: A Spatio-Temporal U-Network for Graph-structured Time Series
  Modeling
ST-UNet: A Spatio-Temporal U-Network for Graph-structured Time Series Modeling
Ting Yu
Haoteng Yin
Zhanxing Zhu
AI4TSGNN
61
55
0
13 Mar 2019
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CENAI
769
3,129
0
04 Jun 2018
Dual-Primal Graph Convolutional Networks
Dual-Primal Graph Convolutional Networks
Federico Monti
Oleksandr Shchur
Aleksandar Bojchevski
Or Litany
Stephan Günnemann
M. Bronstein
GNN
80
79
0
03 Jun 2018
GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal
  Graphs
GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs
Jiani Zhang
Xingjian Shi
Junyuan Xie
Hao Ma
Irwin King
Dit-Yan Yeung
GNN
110
573
0
20 Mar 2018
Dynamic Graph CNN for Learning on Point Clouds
Dynamic Graph CNN for Learning on Point Clouds
Yue Wang
Yongbin Sun
Ziwei Liu
Sanjay E. Sarma
M. Bronstein
Justin Solomon
GNN3DPC
257
6,169
0
24 Jan 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
481
20,233
0
30 Oct 2017
Hidden Physics Models: Machine Learning of Nonlinear Partial
  Differential Equations
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
M. Raissi
George Karniadakis
AI4CEPINN
80
1,137
0
02 Aug 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
598
7,488
0
04 Apr 2017
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
813
3,293
0
24 Nov 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,312
0
22 Dec 2014
1