ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.01850
  4. Cited By
T-Cal: An optimal test for the calibration of predictive models
v1v2v3v4 (latest)

T-Cal: An optimal test for the calibration of predictive models

3 March 2022
Donghwan Lee
Xinmeng Huang
Hamed Hassani
Yan Sun
ArXiv (abs)PDFHTML

Papers citing "T-Cal: An optimal test for the calibration of predictive models"

34 / 34 papers shown
Title
Reassessing How to Compare and Improve the Calibration of Machine Learning Models
Reassessing How to Compare and Improve the Calibration of Machine Learning Models
M. Chidambaram
Rong Ge
107
2
0
06 Jun 2024
Metrics of calibration for probabilistic predictions
Metrics of calibration for probabilistic predictions
Imanol Arrieta-Ibarra
Paman Gujral
Jonathan Tannen
M. Tygert
Cherie Xu
80
22
0
19 May 2022
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk
  Control
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control
Anastasios Nikolas Angelopoulos
Stephen Bates
Emmanuel J. Candès
Michael I. Jordan
Lihua Lei
271
134
0
03 Oct 2021
Goodness-of-fit testing for Hölder continuous densities under local
  differential privacy
Goodness-of-fit testing for Hölder continuous densities under local differential privacy
A. Dubois
Thomas B. Berrett
C. Butucea
40
4
0
06 Jul 2021
Exact Distribution-Free Hypothesis Tests for the Regression Function of
  Binary Classification via Conditional Kernel Mean Embeddings
Exact Distribution-Free Hypothesis Tests for the Regression Function of Binary Classification via Conditional Kernel Mean Embeddings
Ambrus Tamás
Balázs Csanád Csáji
52
4
0
08 Mar 2021
Don't Just Blame Over-parametrization for Over-confidence: Theoretical
  Analysis of Calibration in Binary Classification
Don't Just Blame Over-parametrization for Over-confidence: Theoretical Analysis of Calibration in Binary Classification
Yu Bai
Song Mei
Haiquan Wang
Caiming Xiong
53
42
0
15 Feb 2021
Mitigating Bias in Calibration Error Estimation
Mitigating Bias in Calibration Error Estimation
Rebecca Roelofs
Nicholas Cain
Jonathon Shlens
Michael C. Mozer
75
95
0
15 Dec 2020
Distribution-free binary classification: prediction sets, confidence
  intervals and calibration
Distribution-free binary classification: prediction sets, confidence intervals and calibration
Chirag Gupta
Aleksandr Podkopaev
Aaditya Ramdas
UQCV
89
82
0
18 Jun 2020
Individual Calibration with Randomized Forecasting
Individual Calibration with Randomized Forecasting
Shengjia Zhao
Tengyu Ma
Stefano Ermon
70
60
0
18 Jun 2020
Towards optimal doubly robust estimation of heterogeneous causal effects
Towards optimal doubly robust estimation of heterogeneous causal effects
Edward H. Kennedy
CML
168
326
0
29 Apr 2020
Minimax optimality of permutation tests
Minimax optimality of permutation tests
Ilmun Kim
Sivaraman Balakrishnan
Larry A. Wasserman
61
48
0
30 Mar 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
  Calibration in Deep Learning
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
90
227
0
16 Mar 2020
Calibrating Deep Neural Networks using Focal Loss
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
85
465
0
21 Feb 2020
Optimal rates for independence testing via $U$-statistic permutation
  tests
Optimal rates for independence testing via UUU-statistic permutation tests
Thomas B. Berrett
Ioannis Kontoyiannis
R. Samworth
48
26
0
15 Jan 2020
Beyond temperature scaling: Obtaining well-calibrated multiclass
  probabilities with Dirichlet calibration
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration
Meelis Kull
Miquel Perelló Nieto
Markus Kängsepp
Telmo de Menezes e Silva Filho
Hao Song
Peter A. Flach
UQCV
78
382
0
28 Oct 2019
Calibration tests in multi-class classification: A unifying framework
Calibration tests in multi-class classification: A unifying framework
David Widmann
Fredrik Lindsten
Dave Zachariah
81
94
0
24 Oct 2019
Verified Uncertainty Calibration
Verified Uncertainty Calibration
Ananya Kumar
Percy Liang
Tengyu Ma
178
357
0
23 Sep 2019
On Mixup Training: Improved Calibration and Predictive Uncertainty for
  Deep Neural Networks
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks
S. Thulasidasan
Gopinath Chennupati
J. Bilmes
Tanmoy Bhattacharya
S. Michalak
UQCV
68
545
0
27 May 2019
Measuring Calibration in Deep Learning
Measuring Calibration in Deep Learning
Jeremy Nixon
Michael W. Dusenberry
Ghassen Jerfel
Timothy Nguyen
Jeremiah Zhe Liu
Linchuan Zhang
Dustin Tran
UQCV
77
491
0
02 Apr 2019
Evaluating model calibration in classification
Evaluating model calibration in classification
Juozas Vaicenavicius
David Widmann
Carl R. Andersson
Fredrik Lindsten
Jacob Roll
Thomas B. Schon
UQCV
157
199
0
19 Feb 2019
Conformal calibrators
Conformal calibrators
V. Vovk
Ivan Petej
Paolo Toccaceli
A. Gammerman
235
26
0
18 Feb 2019
Simulator Calibration under Covariate Shift with Kernels
Simulator Calibration under Covariate Shift with Kernels
Keiichi Kisamori
Motonobu Kanagawa
Keisuke Yamazaki
45
11
0
21 Sep 2018
Dirichlet-based Gaussian Processes for Large-scale Calibrated
  Classification
Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification
Dimitrios Milios
Raffaello Camoriano
Pietro Michiardi
Lorenzo Rosasco
Maurizio Filippone
UQCV
69
75
0
28 May 2018
Cross-Fitting and Fast Remainder Rates for Semiparametric Estimation
Cross-Fitting and Fast Remainder Rates for Semiparametric Estimation
Whitney Newey
Jamie Robins
71
147
0
27 Jan 2018
Hypothesis Testing for High-Dimensional Multinomials: A Selective Review
Hypothesis Testing for High-Dimensional Multinomials: A Selective Review
Sivaraman Balakrishnan
Larry A. Wasserman
76
65
0
17 Dec 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,862
0
14 Jun 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
842
5,841
0
05 Dec 2016
Remember the Curse of Dimensionality: The Case of Goodness-of-Fit
  Testing in Arbitrary Dimension
Remember the Curse of Dimensionality: The Case of Goodness-of-Fit Testing in Arbitrary Dimension
E. Arias-Castro
Bruno Pelletier
Venkatesh Saligrama
74
35
0
27 Jul 2016
End to End Learning for Self-Driving Cars
End to End Learning for Self-Driving Cars
Mariusz Bojarski
D. Testa
Daniel Dworakowski
Bernhard Firner
B. Flepp
...
Urs Muller
Jiakai Zhang
Xin Zhang
Jake Zhao
Karol Zieba
SSL
100
4,175
0
25 Apr 2016
Lepski's Method and Adaptive Estimation of Nonlinear Integral
  Functionals of Density
Lepski's Method and Adaptive Estimation of Nonlinear Integral Functionals of Density
Rajarshi Mukherjee
E. T. Tchetgen
J. M. Robins
38
10
0
02 Aug 2015
Higher Criticism for Large-Scale Inference, Especially for Rare and Weak
  Effects
Higher Criticism for Large-Scale Inference, Especially for Rare and Weak Effects
D. Donoho
Jiashun Jin
61
131
0
17 Oct 2014
Rare and Weak effects in Large-Scale Inference: methods and phase
  diagrams
Rare and Weak effects in Large-Scale Inference: methods and phase diagrams
Jiashun Jin
Tracy Ke
84
49
0
16 Oct 2014
Higher order influence functions and minimax estimation of nonlinear
  functionals
Higher order influence functions and minimax estimation of nonlinear functionals
J. M. Robins
Lingling Li
E. T. Tchetgen
A. van der Vaart
309
241
0
20 May 2008
A simple adaptive estimator of the integrated square of a density
A simple adaptive estimator of the integrated square of a density
Evarist Giné
Richard Nickl
176
63
0
06 Mar 2008
1