ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 0803.0847
60
63

A simple adaptive estimator of the integrated square of a density

6 March 2008
Evarist Giné
Richard Nickl
ArXivPDFHTML
Abstract

Given an i.i.d. sample X1,...,XnX_1,...,X_nX1​,...,Xn​ with common bounded density f0f_0f0​ belonging to a Sobolev space of order α\alphaα over the real line, estimation of the quadratic functional ∫Rf02(x)dx\int_{\mathbb{R}}f_0^2(x) \mathrm{d}x∫R​f02​(x)dx is considered. It is shown that the simplest kernel-based plug-in estimator \[\frac{2}{n(n-1)h_n}\sum_{1\leq i<j\leq n}K\biggl(\frac{X_i-X_j}{h_n}\biggr)\] is asymptotically efficient if α>1/4\alpha>1/4α>1/4 and rate-optimal if α≤1/4\alpha\le1/4α≤1/4. A data-driven rule to choose the bandwidth hnh_nhn​ is then proposed, which does not depend on prior knowledge of α\alphaα, so that the corresponding estimator is rate-adaptive for α≤1/4\alpha \leq1/4α≤1/4 and asymptotically efficient if α>1/4\alpha>1/4α>1/4.

View on arXiv
Comments on this paper