Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.08832
Cited By
Universality of empirical risk minimization
17 February 2022
Andrea Montanari
Basil Saeed
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Universality of empirical risk minimization"
17 / 17 papers shown
Title
Asymptotic Analysis of Two-Layer Neural Networks after One Gradient Step under Gaussian Mixtures Data with Structure
Samet Demir
Zafer Dogan
MLT
34
0
0
02 Mar 2025
Analysis of High-dimensional Gaussian Labeled-unlabeled Mixture Model via Message-passing Algorithm
Xiaosi Gu
Tomoyuki Obuchi
74
0
0
29 Nov 2024
Classifying Overlapping Gaussian Mixtures in High Dimensions: From Optimal Classifiers to Neural Nets
Khen Cohen
Noam Levi
Yaron Oz
BDL
31
1
0
28 May 2024
Asymptotic theory of in-context learning by linear attention
Yue M. Lu
Mary I. Letey
Jacob A. Zavatone-Veth
Anindita Maiti
Cengiz Pehlevan
29
10
0
20 May 2024
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
Behrad Moniri
Donghwan Lee
Hamed Hassani
Yan Sun
MLT
40
19
0
11 Oct 2023
Exact threshold for approximate ellipsoid fitting of random points
Antoine Maillard
Afonso S. Bandeira
29
2
0
09 Oct 2023
Fitting an ellipsoid to random points: predictions using the replica method
Antoine Maillard
Dmitriy Kunisky
31
2
0
02 Oct 2023
Moment-Based Adjustments of Statistical Inference in High-Dimensional Generalized Linear Models
Kazuma Sawaya
Yoshimasa Uematsu
Masaaki Imaizumi
34
2
0
28 May 2023
Injectivity of ReLU networks: perspectives from statistical physics
Antoine Maillard
Afonso S. Bandeira
David Belius
Ivan Dokmanić
S. Nakajima
28
5
0
27 Feb 2023
Precise Asymptotic Analysis of Deep Random Feature Models
David Bosch
Ashkan Panahi
B. Hassibi
35
19
0
13 Feb 2023
Bayes-optimal Learning of Deep Random Networks of Extensive-width
Hugo Cui
Florent Krzakala
Lenka Zdeborová
BDL
25
35
0
01 Feb 2023
Demystifying Disagreement-on-the-Line in High Dimensions
Dong-Hwan Lee
Behrad Moniri
Xinmeng Huang
Yan Sun
Hamed Hassani
21
8
0
31 Jan 2023
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models
Lijia Zhou
Frederic Koehler
Pragya Sur
Danica J. Sutherland
Nathan Srebro
83
9
0
21 Oct 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
42
121
0
03 May 2022
Random Features Model with General Convex Regularization: A Fine Grained Analysis with Precise Asymptotic Learning Curves
David Bosch
Ashkan Panahi
Ayça Özçelikkale
Devdatt Dubhash
MLT
24
2
0
06 Apr 2022
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
R. Veiga
Ludovic Stephan
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
MLT
19
31
0
01 Feb 2022
The Lasso with general Gaussian designs with applications to hypothesis testing
Michael Celentano
Andrea Montanari
Yuting Wei
42
63
0
27 Jul 2020
1