ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.08832
  4. Cited By
Universality of empirical risk minimization

Universality of empirical risk minimization

17 February 2022
Andrea Montanari
Basil Saeed
    OOD
ArXivPDFHTML

Papers citing "Universality of empirical risk minimization"

17 / 17 papers shown
Title
Asymptotic Analysis of Two-Layer Neural Networks after One Gradient Step under Gaussian Mixtures Data with Structure
Asymptotic Analysis of Two-Layer Neural Networks after One Gradient Step under Gaussian Mixtures Data with Structure
Samet Demir
Zafer Dogan
MLT
34
0
0
02 Mar 2025
Analysis of High-dimensional Gaussian Labeled-unlabeled Mixture Model via Message-passing Algorithm
Analysis of High-dimensional Gaussian Labeled-unlabeled Mixture Model via Message-passing Algorithm
Xiaosi Gu
Tomoyuki Obuchi
74
0
0
29 Nov 2024
Classifying Overlapping Gaussian Mixtures in High Dimensions: From
  Optimal Classifiers to Neural Nets
Classifying Overlapping Gaussian Mixtures in High Dimensions: From Optimal Classifiers to Neural Nets
Khen Cohen
Noam Levi
Yaron Oz
BDL
31
1
0
28 May 2024
Asymptotic theory of in-context learning by linear attention
Asymptotic theory of in-context learning by linear attention
Yue M. Lu
Mary I. Letey
Jacob A. Zavatone-Veth
Anindita Maiti
Cengiz Pehlevan
29
10
0
20 May 2024
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
Behrad Moniri
Donghwan Lee
Hamed Hassani
Yan Sun
MLT
40
19
0
11 Oct 2023
Exact threshold for approximate ellipsoid fitting of random points
Exact threshold for approximate ellipsoid fitting of random points
Antoine Maillard
Afonso S. Bandeira
29
2
0
09 Oct 2023
Fitting an ellipsoid to random points: predictions using the replica
  method
Fitting an ellipsoid to random points: predictions using the replica method
Antoine Maillard
Dmitriy Kunisky
28
2
0
02 Oct 2023
Moment-Based Adjustments of Statistical Inference in High-Dimensional
  Generalized Linear Models
Moment-Based Adjustments of Statistical Inference in High-Dimensional Generalized Linear Models
Kazuma Sawaya
Yoshimasa Uematsu
Masaaki Imaizumi
34
2
0
28 May 2023
Injectivity of ReLU networks: perspectives from statistical physics
Injectivity of ReLU networks: perspectives from statistical physics
Antoine Maillard
Afonso S. Bandeira
David Belius
Ivan Dokmanić
S. Nakajima
28
5
0
27 Feb 2023
Precise Asymptotic Analysis of Deep Random Feature Models
Precise Asymptotic Analysis of Deep Random Feature Models
David Bosch
Ashkan Panahi
B. Hassibi
35
19
0
13 Feb 2023
Bayes-optimal Learning of Deep Random Networks of Extensive-width
Bayes-optimal Learning of Deep Random Networks of Extensive-width
Hugo Cui
Florent Krzakala
Lenka Zdeborová
BDL
25
35
0
01 Feb 2023
Demystifying Disagreement-on-the-Line in High Dimensions
Demystifying Disagreement-on-the-Line in High Dimensions
Dong-Hwan Lee
Behrad Moniri
Xinmeng Huang
Yan Sun
Hamed Hassani
21
8
0
31 Jan 2023
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized
  Linear Models
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models
Lijia Zhou
Frederic Koehler
Pragya Sur
Danica J. Sutherland
Nathan Srebro
83
9
0
21 Oct 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step
  Improves the Representation
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
42
121
0
03 May 2022
Random Features Model with General Convex Regularization: A Fine Grained
  Analysis with Precise Asymptotic Learning Curves
Random Features Model with General Convex Regularization: A Fine Grained Analysis with Precise Asymptotic Learning Curves
David Bosch
Ashkan Panahi
Ayça Özçelikkale
Devdatt Dubhash
MLT
24
2
0
06 Apr 2022
Phase diagram of Stochastic Gradient Descent in high-dimensional
  two-layer neural networks
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
R. Veiga
Ludovic Stephan
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
MLT
13
31
0
01 Feb 2022
The Lasso with general Gaussian designs with applications to hypothesis
  testing
The Lasso with general Gaussian designs with applications to hypothesis testing
Michael Celentano
Andrea Montanari
Yuting Wei
42
63
0
27 Jul 2020
1