ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.07462
  4. Cited By
Vau da muntanialas: Energy-efficient multi-die scalable acceleration of
  RNN inference

Vau da muntanialas: Energy-efficient multi-die scalable acceleration of RNN inference

14 February 2022
G. Paulin
Francesco Conti
Lukas Cavigelli
Luca Benini
ArXiv (abs)PDFHTML

Papers citing "Vau da muntanialas: Energy-efficient multi-die scalable acceleration of RNN inference"

28 / 28 papers shown
Title
Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with
  Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node
Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node
Alfio Di Mauro
Francesco Conti
Pasquale Davide Schiavone
D. Rossi
Luca Benini
51
9
0
17 Jul 2020
RPR: Random Partition Relaxation for Training; Binary and Ternary Weight
  Neural Networks
RPR: Random Partition Relaxation for Training; Binary and Ternary Weight Neural Networks
Lukas Cavigelli
Luca Benini
MQ
47
9
0
04 Jan 2020
ELSA: A Throughput-Optimized Design of an LSTM Accelerator for
  Energy-Constrained Devices
ELSA: A Throughput-Optimized Design of an LSTM Accelerator for Energy-Constrained Devices
E. Azari
S. Vrudhula
62
5
0
19 Oct 2019
EBPC: Extended Bit-Plane Compression for Deep Neural Network Inference
  and Training Accelerators
EBPC: Extended Bit-Plane Compression for Deep Neural Network Inference and Training Accelerators
Lukas Cavigelli
Georg Rutishauser
Luca Benini
MQ
38
34
0
30 Aug 2019
Data-Free Quantization Through Weight Equalization and Bias Correction
Data-Free Quantization Through Weight Equalization and Bias Correction
Markus Nagel
M. V. Baalen
Tijmen Blankevoort
Max Welling
MQ
75
513
0
11 Jun 2019
A Study of BFLOAT16 for Deep Learning Training
A Study of BFLOAT16 for Deep Learning Training
Dhiraj D. Kalamkar
Dheevatsa Mudigere
Naveen Mellempudi
Dipankar Das
K. Banerjee
...
Sudarshan Srinivasan
Abhisek Kundu
M. Smelyanskiy
Bharat Kaul
Pradeep Dubey
MQ
83
346
0
29 May 2019
AIDA: Associative DNN Inference Accelerator
AIDA: Associative DNN Inference Accelerator
L. Yavits
R. Kaplan
R. Ginosar
22
1
0
20 Dec 2018
Learning to Skip Ineffectual Recurrent Computations in LSTMs
Learning to Skip Ineffectual Recurrent Computations in LSTMs
A. Ardakani
Zhengyun Ji
W. Gross
32
16
0
09 Nov 2018
CBinfer: Exploiting Frame-to-Frame Locality for Faster Convolutional
  Network Inference on Video Streams
CBinfer: Exploiting Frame-to-Frame Locality for Faster Convolutional Network Inference on Video Streams
Lukas Cavigelli
Luca Benini
61
26
0
15 Aug 2018
LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep
  Neural Networks
LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks
Dongqing Zhang
Jiaolong Yang
Dongqiangzi Ye
G. Hua
MQ
62
703
0
26 Jul 2018
XNOR Neural Engine: a Hardware Accelerator IP for 21.6 fJ/op Binary
  Neural Network Inference
XNOR Neural Engine: a Hardware Accelerator IP for 21.6 fJ/op Binary Neural Network Inference
Francesco Conti
Pasquale Davide Schiavone
Luca Benini
69
109
0
09 Jul 2018
C-LSTM: Enabling Efficient LSTM using Structured Compression Techniques
  on FPGAs
C-LSTM: Enabling Efficient LSTM using Structured Compression Techniques on FPGAs
Shuo Wang
Zhe Li
Caiwen Ding
Bo Yuan
Yanzhi Wang
Qinru Qiu
Yun Liang
45
193
0
14 Mar 2018
An Empirical Evaluation of Generic Convolutional and Recurrent Networks
  for Sequence Modeling
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
Shaojie Bai
J. Zico Kolter
V. Koltun
DRL
95
4,815
0
04 Mar 2018
Effective Quantization Approaches for Recurrent Neural Networks
Effective Quantization Approaches for Recurrent Neural Networks
Md. Zahangir Alom
A. Moody
N. Maruyama
B. Van Essen
T. Taha
MQ
45
35
0
07 Feb 2018
Alternating Multi-bit Quantization for Recurrent Neural Networks
Alternating Multi-bit Quantization for Recurrent Neural Networks
Chen Xu
Jianqiang Yao
Zhouchen Lin
Wenwu Ou
Yuanbin Cao
Zhirong Wang
H. Zha
MQ
76
116
0
01 Feb 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
184
19,284
0
13 Jan 2018
Recent Advances in Recurrent Neural Networks
Recent Advances in Recurrent Neural Networks
Hojjat Salehinejad
Sharan Sankar
Joseph Barfett
E. Colak
S. Valaee
AI4TS
102
582
0
29 Dec 2017
Chipmunk: A Systolically Scalable 0.9 mm${}^2$, 3.08 Gop/s/mW @ 1.2 mW
  Accelerator for Near-Sensor Recurrent Neural Network Inference
Chipmunk: A Systolically Scalable 0.9 mm2{}^22, 3.08 Gop/s/mW @ 1.2 mW Accelerator for Near-Sensor Recurrent Neural Network Inference
Francesco Conti
Lukas Cavigelli
G. Paulin
Igor Susmelj
Luca Benini
36
42
0
15 Nov 2017
Recent Trends in Deep Learning Based Natural Language Processing
Recent Trends in Deep Learning Based Natural Language Processing
Tom Young
Devamanyu Hazarika
Soujanya Poria
Min Zhang
75
2,835
0
09 Aug 2017
Extremely Low Bit Neural Network: Squeeze the Last Bit Out with ADMM
Extremely Low Bit Neural Network: Squeeze the Last Bit Out with ADMM
Cong Leng
Hao Li
Shenghuo Zhu
Rong Jin
MQ
63
287
0
24 Jul 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
701
131,652
0
12 Jun 2017
Incremental Network Quantization: Towards Lossless CNNs with
  Low-Precision Weights
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
395
1,051
0
10 Feb 2017
Trained Ternary Quantization
Trained Ternary Quantization
Chenzhuo Zhu
Song Han
Huizi Mao
W. Dally
MQ
137
1,035
0
04 Dec 2016
ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA
ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA
Song Han
Junlong Kang
Huizi Mao
Yiming Hu
Xin Li
...
Hong Luo
Song Yao
Yu Wang
Huazhong Yang
W. Dally
73
629
0
01 Dec 2016
Effective Quantization Methods for Recurrent Neural Networks
Effective Quantization Methods for Recurrent Neural Networks
Qinyao He
He Wen
Shuchang Zhou
Yuxin Wu
Cong Yao
Xinyu Zhou
Yuheng Zou
MQ
63
75
0
30 Nov 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Deep Speech: Scaling up end-to-end speech recognition
Deep Speech: Scaling up end-to-end speech recognition
Awni Y. Hannun
Carl Case
Jared Casper
Bryan Catanzaro
G. Diamos
...
R. Prenger
S. Satheesh
Shubho Sengupta
Adam Coates
A. Ng
180
2,128
0
17 Dec 2014
Speech Recognition with Deep Recurrent Neural Networks
Speech Recognition with Deep Recurrent Neural Networks
Alex Graves
Abdel-rahman Mohamed
Geoffrey E. Hinton
226
8,517
0
22 Mar 2013
1