Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.06985
Cited By
Deep Ensembles Work, But Are They Necessary?
14 February 2022
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
R. Zemel
John P. Cunningham
OOD
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Ensembles Work, But Are They Necessary?"
15 / 15 papers shown
Title
CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation in Classification Tasks
Kaizheng Wang
Keivan K1 Shariatmadar
Shireen Kudukkil Manchingal
Fabio Cuzzolin
David Moens
Hans Hallez
UQCV
BDL
92
12
0
28 Jan 2025
Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics
Daniel Paulin
P. Whalley
Neil K. Chada
B. Leimkuhler
BDL
49
4
0
14 Oct 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
55
3
0
05 Jun 2024
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Kaizheng Wang
Fabio Cuzzolin
Keivan K1 Shariatmadar
David Moens
Hans Hallez
UQCV
BDL
83
0
0
23 May 2024
Uncertainty Quantification for Image-based Traffic Prediction across Cities
Alexander Timans
Nina Wiedemann
Nishant Kumar
Ye Hong
Martin Raubal
18
1
0
11 Aug 2023
When are ensembles really effective?
Ryan Theisen
Hyunsuk Kim
Yaoqing Yang
Liam Hodgkinson
Michael W. Mahoney
FedML
UQCV
35
15
0
21 May 2023
Diversifying Deep Ensembles: A Saliency Map Approach for Enhanced OOD Detection, Calibration, and Accuracy
Stanislav Dereka
I. Karpukhin
Maksim Zhdanov
Sergey Kolesnikov
36
0
0
19 May 2023
Pathologies of Predictive Diversity in Deep Ensembles
Taiga Abe
E. Kelly Buchanan
Geoff Pleiss
John P. Cunningham
UQCV
38
13
0
01 Feb 2023
Joint Training of Deep Ensembles Fails Due to Learner Collusion
Alan Jeffares
Tennison Liu
Jonathan Crabbé
M. Schaar
FedML
53
15
0
26 Jan 2023
Learning New Tasks from a Few Examples with Soft-Label Prototypes
Avyav Kumar Singh
Ekaterina Shutova
H. Yannakoudakis
VLM
25
0
0
31 Oct 2022
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?
Lisa Wimmer
Yusuf Sale
Paul Hofman
Bern Bischl
Eyke Hüllermeier
PER
UD
34
64
0
07 Sep 2022
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
37
1
0
02 Aug 2022
Deep interpretable ensembles
Lucas Kook
Andrea Götschi
Philipp F. M. Baumann
Torsten Hothorn
Beate Sick
UQCV
22
8
0
25 May 2022
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1