ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.06709
  4. Cited By
How Do Vision Transformers Work?

How Do Vision Transformers Work?

14 February 2022
Namuk Park
Songkuk Kim
    ViT
ArXivPDFHTML

Papers citing "How Do Vision Transformers Work?"

36 / 236 papers shown
Title
Transforming medical imaging with Transformers? A comparative review of
  key properties, current progresses, and future perspectives
Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives
Jun Li
Junyu Chen
Yucheng Tang
Ce Wang
Bennett A. Landman
S. K. Zhou
ViT
OOD
MedIm
21
21
0
02 Jun 2022
3D-C2FT: Coarse-to-fine Transformer for Multi-view 3D Reconstruction
3D-C2FT: Coarse-to-fine Transformer for Multi-view 3D Reconstruction
Leslie Ching Ow Tiong
Dick Sigmund
Andrew Beng Jin Teoh
3DV
ViT
31
12
0
29 May 2022
A Closer Look at Self-Supervised Lightweight Vision Transformers
A Closer Look at Self-Supervised Lightweight Vision Transformers
Shaoru Wang
Jin Gao
Zeming Li
Jian Sun
Weiming Hu
ViT
67
41
0
28 May 2022
Architecture-Agnostic Masked Image Modeling -- From ViT back to CNN
Architecture-Agnostic Masked Image Modeling -- From ViT back to CNN
Siyuan Li
Di Wu
Fang Wu
Lei Shang
Stan.Z.Li
32
48
0
27 May 2022
Fast Vision Transformers with HiLo Attention
Fast Vision Transformers with HiLo Attention
Zizheng Pan
Jianfei Cai
Bohan Zhuang
28
152
0
26 May 2022
Inception Transformer
Inception Transformer
Chenyang Si
Weihao Yu
Pan Zhou
Yichen Zhou
Xinchao Wang
Shuicheng Yan
ViT
26
187
0
25 May 2022
Towards Unified Keyframe Propagation Models
Towards Unified Keyframe Propagation Models
Patrick Esser
Peter Michael
Soumyadip Sengupta
VGen
25
0
0
19 May 2022
Vision Transformer Adapter for Dense Predictions
Vision Transformer Adapter for Dense Predictions
Zhe Chen
Yuchen Duan
Wenhai Wang
Junjun He
Tong Lu
Jifeng Dai
Yu Qiao
43
543
0
17 May 2022
Continual Hippocampus Segmentation with Transformers
Continual Hippocampus Segmentation with Transformers
Amin Ranem
Camila González
Anirban Mukhopadhyay
MedIm
CLL
13
16
0
17 Apr 2022
ResT V2: Simpler, Faster and Stronger
ResT V2: Simpler, Faster and Stronger
Qing-Long Zhang
Yubin Yang
ViT
35
25
0
15 Apr 2022
Machine Learning State-of-the-Art with Uncertainties
Machine Learning State-of-the-Art with Uncertainties
Peter Steinbach
Felicita Gernhardt
Mahnoor Tanveer
Steve Schmerler
Sebastian Starke
UQCV
OOD
14
3
0
11 Apr 2022
Improving Vision Transformers by Revisiting High-frequency Components
Improving Vision Transformers by Revisiting High-frequency Components
Jiawang Bai
Liuliang Yuan
Shutao Xia
Shuicheng Yan
Zhifeng Li
Wei Liu
ViT
16
90
0
03 Apr 2022
CRAFT: Cross-Attentional Flow Transformer for Robust Optical Flow
CRAFT: Cross-Attentional Flow Transformer for Robust Optical Flow
Xiuchao Sui
Shaohua Li
Xue Geng
Yan Wu
Xinxing Xu
Yong Liu
Rick Siow Mong Goh
Hongyuan Zhu
ViT
31
95
0
31 Mar 2022
FAMLP: A Frequency-Aware MLP-Like Architecture For Domain Generalization
FAMLP: A Frequency-Aware MLP-Like Architecture For Domain Generalization
Kecheng Zheng
Yang Cao
Kai Zhu
Ruijing Zhao
Zhengjun Zha
30
5
0
24 Mar 2022
PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers
PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers
Ryan Grainger
Thomas Paniagua
Xi Song
Naresh P. Cuntoor
Mun Wai Lee
Tianfu Wu
ViT
10
7
0
22 Mar 2022
Are Vision Transformers Robust to Spurious Correlations?
Are Vision Transformers Robust to Spurious Correlations?
Soumya Suvra Ghosal
Yifei Ming
Yixuan Li
ViT
25
28
0
17 Mar 2022
LDP: Learnable Dynamic Precision for Efficient Deep Neural Network
  Training and Inference
LDP: Learnable Dynamic Precision for Efficient Deep Neural Network Training and Inference
Zhongzhi Yu
Y. Fu
Shang Wu
Mengquan Li
Haoran You
Yingyan Lin
28
1
0
15 Mar 2022
Deep Transformers Thirst for Comprehensive-Frequency Data
Deep Transformers Thirst for Comprehensive-Frequency Data
R. Xia
Chao Xue
Boyu Deng
Fang Wang
Jingchao Wang
ViT
25
0
0
14 Mar 2022
When Do Flat Minima Optimizers Work?
When Do Flat Minima Optimizers Work?
Jean Kaddour
Linqing Liu
Ricardo M. A. Silva
Matt J. Kusner
ODL
21
58
0
01 Feb 2022
How Expressive are Transformers in Spectral Domain for Graphs?
How Expressive are Transformers in Spectral Domain for Graphs?
Anson Bastos
Abhishek Nadgeri
Kuldeep Singh
H. Kanezashi
Toyotaro Suzumura
I. Mulang'
24
12
0
23 Jan 2022
Swin Transformer coupling CNNs Makes Strong Contextual Encoders for VHR
  Image Road Extraction
Swin Transformer coupling CNNs Makes Strong Contextual Encoders for VHR Image Road Extraction
Tao Chen
Yiran Liu
Haoyu Jiang
Ruirui Li
ViT
25
0
0
10 Jan 2022
Learning Spatially-Adaptive Squeeze-Excitation Networks for Image
  Synthesis and Image Recognition
Learning Spatially-Adaptive Squeeze-Excitation Networks for Image Synthesis and Image Recognition
Jianghao Shen
Tianfu Wu
ViT
18
0
0
29 Dec 2021
MetaFormer Is Actually What You Need for Vision
MetaFormer Is Actually What You Need for Vision
Weihao Yu
Mi Luo
Pan Zhou
Chenyang Si
Yichen Zhou
Xinchao Wang
Jiashi Feng
Shuicheng Yan
31
874
0
22 Nov 2021
TransMorph: Transformer for unsupervised medical image registration
TransMorph: Transformer for unsupervised medical image registration
Junyu Chen
Eric C. Frey
Yufan He
W. Paul Segars
Ye Li
Yong Du
ViT
MedIm
36
302
0
19 Nov 2021
A Survey of Visual Transformers
A Survey of Visual Transformers
Yang Liu
Yao Zhang
Yixin Wang
Feng Hou
Jin Yuan
Jiang Tian
Yang Zhang
Zhongchao Shi
Jianping Fan
Zhiqiang He
3DGS
ViT
77
330
0
11 Nov 2021
CMT: Convolutional Neural Networks Meet Vision Transformers
CMT: Convolutional Neural Networks Meet Vision Transformers
Jianyuan Guo
Kai Han
Han Wu
Yehui Tang
Chunjing Xu
Yunhe Wang
Chang Xu
ViT
351
633
0
13 Jul 2021
GeoT: A Geometry-aware Transformer for Reliable Molecular Property
  Prediction and Chemically Interpretable Representation Learning
GeoT: A Geometry-aware Transformer for Reliable Molecular Property Prediction and Chemically Interpretable Representation Learning
Bumju Kwak
J. Park
Taewon Kang
Jeonghee Jo
Byunghan Lee
Sungroh Yoon
AI4CE
32
6
0
29 Jun 2021
Blurs Behave Like Ensembles: Spatial Smoothings to Improve Accuracy,
  Uncertainty, and Robustness
Blurs Behave Like Ensembles: Spatial Smoothings to Improve Accuracy, Uncertainty, and Robustness
Namuk Park
S. Kim
UQCV
AAML
20
19
0
26 May 2021
Intriguing Properties of Vision Transformers
Intriguing Properties of Vision Transformers
Muzammal Naseer
Kanchana Ranasinghe
Salman Khan
Munawar Hayat
F. Khan
Ming-Hsuan Yang
ViT
262
621
0
21 May 2021
MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya O. Tolstikhin
N. Houlsby
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
...
Andreas Steiner
Daniel Keysers
Jakob Uszkoreit
Mario Lucic
Alexey Dosovitskiy
271
2,603
0
04 May 2021
LambdaNetworks: Modeling Long-Range Interactions Without Attention
LambdaNetworks: Modeling Long-Range Interactions Without Attention
Irwan Bello
272
179
0
17 Feb 2021
Bottleneck Transformers for Visual Recognition
Bottleneck Transformers for Visual Recognition
A. Srinivas
Nayeon Lee
Niki Parmar
Jonathon Shlens
Pieter Abbeel
Ashish Vaswani
SLR
290
979
0
27 Jan 2021
Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts
  Generalization
Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization
Stanislaw Jastrzebski
Devansh Arpit
Oliver Åstrand
Giancarlo Kerg
Huan Wang
Caiming Xiong
R. Socher
Kyunghyun Cho
Krzysztof J. Geras
AI4CE
184
65
0
28 Dec 2020
Local Convolutions Cause an Implicit Bias towards High Frequency
  Adversarial Examples
Local Convolutions Cause an Implicit Bias towards High Frequency Adversarial Examples
J. O. Caro
Yilong Ju
Ryan Pyle
Sourav Dey
Wieland Brendel
Fabio Anselmi
Ankit B. Patel
AAML
14
10
0
19 Jun 2020
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
297
10,220
0
16 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
287
2,890
0
15 Sep 2016
Previous
12345