ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.14575
23
12

3D-C2FT: Coarse-to-fine Transformer for Multi-view 3D Reconstruction

29 May 2022
Leslie Ching Ow Tiong
Dick Sigmund
Andrew Beng Jin Teoh
    3DV
    ViT
ArXivPDFHTML
Abstract

Recently, the transformer model has been successfully employed for the multi-view 3D reconstruction problem. However, challenges remain on designing an attention mechanism to explore the multiview features and exploit their relations for reinforcing the encoding-decoding modules. This paper proposes a new model, namely 3D coarse-to-fine transformer (3D-C2FT), by introducing a novel coarse-to-fine(C2F) attention mechanism for encoding multi-view features and rectifying defective 3D objects. C2F attention mechanism enables the model to learn multi-view information flow and synthesize 3D surface correction in a coarse to fine-grained manner. The proposed model is evaluated by ShapeNet and Multi-view Real-life datasets. Experimental results show that 3D-C2FT achieves notable results and outperforms several competing models on these datasets.

View on arXiv
Comments on this paper