Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.04640
Cited By
Sharper Rates for Separable Minimax and Finite Sum Optimization via Primal-Dual Extragradient Methods
9 February 2022
Yujia Jin
Aaron Sidford
Kevin Tian
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Sharper Rates for Separable Minimax and Finite Sum Optimization via Primal-Dual Extragradient Methods"
39 / 39 papers shown
Title
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
301
30,152
0
01 Mar 2022
Lifted Primal-Dual Method for Bilinearly Coupled Smooth Minimax Optimization
K. K. Thekumparampil
Niao He
Sewoong Oh
76
30
0
19 Jan 2022
Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling
D. Kovalev
Alexander Gasnikov
Peter Richtárik
117
33
0
30 Dec 2021
Variance Reduction via Primal-Dual Accelerated Dual Averaging for Nonsmooth Convex Finite-Sums
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
119
17
0
26 Feb 2021
Stochastic Variance Reduction for Variational Inequality Methods
Ahmet Alacaoglu
Yura Malitsky
93
71
0
16 Feb 2021
Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration
Michael B. Cohen
Aaron Sidford
Kevin Tian
67
41
0
12 Nov 2020
Coordinate Methods for Matrix Games
Y. Carmon
Yujia Jin
Aaron Sidford
Kevin Tian
55
33
0
17 Sep 2020
Random extrapolation for primal-dual coordinate descent
Ahmet Alacaoglu
Olivier Fercoq
Volkan Cevher
48
17
0
13 Jul 2020
Optimal and Practical Algorithms for Smooth and Strongly Convex Decentralized Optimization
D. Kovalev
Adil Salim
Peter Richtárik
56
83
0
21 Jun 2020
Variance Reduction via Accelerated Dual Averaging for Finite-Sum Optimization
Chaobing Song
Yong Jiang
Yi-An Ma
118
23
0
18 Jun 2020
Improved Algorithms for Convex-Concave Minimax Optimization
Yuanhao Wang
Jian Li
80
64
0
11 Jun 2020
Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion and Strong Solutions to Variational Inequalities
Jelena Diakonikolas
67
77
0
20 Feb 2020
Near-Optimal Algorithms for Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
201
254
0
05 Feb 2020
On the convergence of single-call stochastic extra-gradient methods
Yu-Guan Hsieh
F. Iutzeler
J. Malick
P. Mertikopoulos
69
169
0
22 Aug 2019
Variance Reduction for Matrix Games
Y. Carmon
Yujia Jin
Aaron Sidford
Kevin Tian
84
67
0
03 Jul 2019
A unified variance-reduced accelerated gradient method for convex optimization
Guanghui Lan
Zhize Li
Yi Zhou
60
61
0
29 May 2019
Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova
Gauthier Gidel
François Fleuret
Simon Lacoste-Julien
69
137
0
18 Apr 2019
Acceleration through Optimistic No-Regret Dynamics
Jun-Kun Wang
Jacob D. Abernethy
154
45
0
27 Jul 2018
Direct Acceleration of SAGA using Sampled Negative Momentum
Kaiwen Zhou
92
45
0
28 Jun 2018
Faster Rates for Convex-Concave Games
Jacob D. Abernethy
Kevin A. Lai
Kfir Y. Levy
Jun-Kun Wang
26
47
0
17 May 2018
Leverage Score Sampling for Faster Accelerated Regression and ERM
Naman Agarwal
Sham Kakade
Rahul Kidambi
Y. Lee
Praneeth Netrapalli
Aaron Sidford
115
21
0
22 Nov 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
319
12,151
0
19 Jun 2017
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
102
187
0
15 Jun 2017
Exploiting Strong Convexity from Data with Primal-Dual First-Order Algorithms
Jialei Wang
Lin Xiao
119
42
0
07 Mar 2017
Stochastic Variance Reduction Methods for Policy Evaluation
S. Du
Jianshu Chen
Lihong Li
Lin Xiao
Dengyong Zhou
OffRL
63
158
0
25 Feb 2017
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
256
3,226
0
15 Jun 2016
Tight Complexity Bounds for Optimizing Composite Objectives
Blake E. Woodworth
Nathan Srebro
138
185
0
25 May 2016
Stochastic Variance Reduction Methods for Saddle-Point Problems
B. Palaniappan
Francis R. Bach
139
214
0
20 May 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
127
581
0
18 Mar 2016
Optimal Black-Box Reductions Between Optimization Objectives
Zeyuan Allen-Zhu
Elad Hazan
102
96
0
17 Mar 2016
A Simple Practical Accelerated Method for Finite Sums
Aaron Defazio
145
121
0
08 Feb 2016
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
91
171
0
30 Dec 2015
Un-regularizing: approximate proximal point and faster stochastic algorithms for empirical risk minimization
Roy Frostig
Rong Ge
Sham Kakade
Aaron Sidford
74
150
0
24 Jun 2015
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
Yuchen Zhang
Xiao Lin
119
265
0
10 Sep 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
139
1,830
0
01 Jul 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
331
1,250
0
10 Sep 2013
Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
ODL
115
463
0
10 Sep 2013
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
198
1,033
0
10 Sep 2012
Solving variational inequalities with Stochastic Mirror-Prox algorithm
A. Juditsky
A. Nemirovskii
Claire Tauvel
140
444
0
04 Sep 2008
1