ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.04137
  4. Cited By
Machine Learning in Heterogeneous Porous Materials

Machine Learning in Heterogeneous Porous Materials

4 February 2022
Martha DÉli
H. Deng
Cedric G. Fraces
K. Garikipati
L. Graham‐Brady
Amanda A. Howard
Geoerge Karniadakid
Vahid Keshavarzzadeh
Robert M. Kirby
N. Kutz
Chunhui Li
Xing Liu
Hannah Lu
P. Newell
Daniel O’Malley
M. Prodanović
G. Srinivasan
A. Tartakovsky
D. Tartakovsky
H. Tchelepi
B. Važić
Hari S. Viswanathan
H. Yoon
P. Zarzycki
    AI4CE
ArXivPDFHTML

Papers citing "Machine Learning in Heterogeneous Porous Materials"

6 / 6 papers shown
Title
Partial Differential Equations Meet Deep Neural Networks: A Survey
Partial Differential Equations Meet Deep Neural Networks: A Survey
Shudong Huang
Wentao Feng
Chenwei Tang
Jiancheng Lv
AI4CE
AIMat
29
18
0
27 Oct 2022
Meta-learning PINN loss functions
Meta-learning PINN loss functions
Apostolos F. Psaros
Kenji Kawaguchi
George Karniadakis
PINN
46
97
0
12 Jul 2021
Bayesian neural networks for weak solution of PDEs with uncertainty
  quantification
Bayesian neural networks for weak solution of PDEs with uncertainty quantification
Xiaoxuan Zhang
K. Garikipati
AI4CE
46
11
0
13 Jan 2021
Data-driven learning of nonlocal models: from high-fidelity simulations
  to constitutive laws
Data-driven learning of nonlocal models: from high-fidelity simulations to constitutive laws
Huaiqian You
Yue Yu
Stewart Silling
M. DÉlia
35
33
0
08 Dec 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
183
760
0
13 Mar 2020
An Energy Approach to the Solution of Partial Differential Equations in
  Computational Mechanics via Machine Learning: Concepts, Implementation and
  Applications
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
E. Samaniego
C. Anitescu
S. Goswami
Vien Minh Nguyen-Thanh
Hongwei Guo
Khader M. Hamdia
Timon Rabczuk
X. Zhuang
PINN
AI4CE
159
1,342
0
27 Aug 2019
1