Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.03836
Cited By
An Improved Analysis of Gradient Tracking for Decentralized Machine Learning
8 February 2022
Anastasia Koloskova
Tao R. Lin
Sebastian U. Stich
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An Improved Analysis of Gradient Tracking for Decentralized Machine Learning"
36 / 36 papers shown
Title
Fully First-Order Methods for Decentralized Bilevel Optimization
Xiaoyu Wang
Xuxing Chen
Shiqian Ma
Tong Zhang
88
0
0
25 Oct 2024
SADDLe: Sharpness-Aware Decentralized Deep Learning with Heterogeneous Data
Sakshi Choudhary
Sai Aparna Aketi
Kaushik Roy
FedML
80
0
0
22 May 2024
Robust Decentralized Learning with Local Updates and Gradient Tracking
Sajjad Ghiasvand
Amirhossein Reisizadeh
Mahnoosh Alizadeh
Ramtin Pedarsani
90
4
0
02 May 2024
Communication-Efficient Federated Optimization over Semi-Decentralized Networks
He Wang
Yuejie Chi
FedML
110
2
0
30 Nov 2023
Distributed Random Reshuffling Methods with Improved Convergence
Kun-Yen Huang
Linli Zhou
Shi Pu
81
4
0
21 Jun 2023
RelaySum for Decentralized Deep Learning on Heterogeneous Data
Thijs Vogels
Lie He
Anastasia Koloskova
Tao R. Lin
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
FedML
MoE
47
61
0
08 Oct 2021
Removing Data Heterogeneity Influence Enhances Network Topology Dependence of Decentralized SGD
Kun Yuan
Sulaiman A. Alghunaim
Xinmeng Huang
50
34
0
17 May 2021
DecentLaM: Decentralized Momentum SGD for Large-batch Deep Training
Kun Yuan
Yiming Chen
Xinmeng Huang
Yingya Zhang
Pan Pan
Yinghui Xu
W. Yin
MoE
84
64
0
24 Apr 2021
Consensus Control for Decentralized Deep Learning
Lingjing Kong
Tao R. Lin
Anastasia Koloskova
Martin Jaggi
Sebastian U. Stich
31
79
0
09 Feb 2021
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data
Tao R. Lin
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
FedML
73
101
0
09 Feb 2021
A Linearly Convergent Algorithm for Decentralized Optimization: Sending Less Bits for Free!
D. Kovalev
Anastasia Koloskova
Martin Jaggi
Peter Richtárik
Sebastian U. Stich
62
75
0
03 Nov 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
78
506
0
23 Mar 2020
FedDANE: A Federated Newton-Type Method
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
138
156
0
07 Jan 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
232
6,247
0
10 Dec 2019
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
65
346
0
14 Oct 2019
DeepSqueeze
\texttt{DeepSqueeze}
DeepSqueeze
: Decentralization Meets Error-Compensated Compression
Hanlin Tang
Xiangru Lian
Shuang Qiu
Lei Yuan
Ce Zhang
Tong Zhang
Liu
33
49
0
17 Jul 2019
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
54
113
0
09 Jul 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
138
2,333
0
04 Jul 2019
MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sampling
Jianyu Wang
Anit Kumar Sahu
Zhouyi Yang
Gauri Joshi
S. Kar
60
163
0
23 May 2019
Distributed stochastic optimization with gradient tracking over strongly-connected networks
Ran Xin
Anit Kumar Sahu
U. Khan
S. Kar
68
112
0
18 Mar 2019
Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
FedML
79
510
0
01 Feb 2019
Stochastic Gradient Push for Distributed Deep Learning
Mahmoud Assran
Nicolas Loizou
Nicolas Ballas
Michael G. Rabbat
73
345
0
27 Nov 2018
New Convergence Aspects of Stochastic Gradient Algorithms
Lam M. Nguyen
Phuong Ha Nguyen
Peter Richtárik
K. Scheinberg
Martin Takáč
Marten van Dijk
102
66
0
10 Nov 2018
COLA: Decentralized Linear Learning
Lie He
An Bian
Martin Jaggi
80
120
0
13 Aug 2018
Distributed Stochastic Gradient Tracking Methods
Shi Pu
A. Nedić
64
291
0
25 May 2018
D
2
^2
2
: Decentralized Training over Decentralized Data
Hanlin Tang
Xiangru Lian
Ming Yan
Ce Zhang
Ji Liu
31
350
0
19 Mar 2018
Communication Compression for Decentralized Training
Hanlin Tang
Shaoduo Gan
Ce Zhang
Tong Zhang
Ji Liu
55
273
0
17 Mar 2018
Network Topology and Communication-Computation Tradeoffs in Decentralized Optimization
A. Nedić
Alexander Olshevsky
Michael G. Rabbat
58
509
0
26 Sep 2017
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian
Ce Zhang
Huan Zhang
Cho-Jui Hsieh
Wei Zhang
Ji Liu
50
1,227
0
25 May 2017
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
126
1,897
0
08 Oct 2016
Geometrically Convergent Distributed Optimization with Uncoordinated Step-Sizes
A. Nedić
Alexander Olshevsky
Wei Shi
César A. Uribe
55
140
0
19 Sep 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
394
17,453
0
17 Feb 2016
NEXT: In-Network Nonconvex Optimization
P. Lorenzo
G. Scutari
91
508
0
01 Feb 2016
Asynchronous Distributed Optimization using a Randomized Alternating Direction Method of Multipliers
F. Iutzeler
Pascal Bianchi
P. Ciblat
W. Hachem
73
181
0
12 Mar 2013
Distributed optimization over time-varying directed graphs
A. Nedić
Alexander Olshevsky
61
998
0
10 Mar 2013
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
259
685
0
07 Dec 2010
1