ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.03199
  4. Cited By
AI Research Associate for Early-Stage Scientific Discovery

AI Research Associate for Early-Stage Scientific Discovery

2 February 2022
M. Behandish
J. Maxwell
Johan de Kleer
    AI4CE
ArXivPDFHTML

Papers citing "AI Research Associate for Early-Stage Scientific Discovery"

11 / 11 papers shown
Title
A Survey of Deep Learning for Scientific Discovery
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
123
123
0
26 Mar 2020
Learning to Simulate Complex Physics with Graph Networks
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINN
AI4CE
131
1,088
0
21 Feb 2020
Operationally meaningful representations of physical systems in neural
  networks
Operationally meaningful representations of physical systems in neural networks
Hendrik Poulsen Nautrup
Tony Metger
Raban Iten
Sofiene Jerbi
Lea M. Trenkwalder
H. Wilming
Hans J. Briegel
R. Renner
AI4CE
NAI
51
27
0
02 Jan 2020
Towards Physics-informed Deep Learning for Turbulent Flow Prediction
Towards Physics-informed Deep Learning for Turbulent Flow Prediction
Rui Wang
K. Kashinath
M. Mustafa
A. Albert
Rose Yu
PINN
AI4CE
39
365
0
20 Nov 2019
Physics-Guided Architecture (PGA) of Neural Networks for Quantifying
  Uncertainty in Lake Temperature Modeling
Physics-Guided Architecture (PGA) of Neural Networks for Quantifying Uncertainty in Lake Temperature Modeling
Arka Daw
R. Q. Thomas
C. Carey
J. Read
A. Appling
Anuj Karpatne
AI4CE
74
117
0
06 Nov 2019
Learning Symbolic Physics with Graph Networks
Learning Symbolic Physics with Graph Networks
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
PINN
AI4CE
247
86
0
12 Sep 2019
AI Feynman: a Physics-Inspired Method for Symbolic Regression
AI Feynman: a Physics-Inspired Method for Symbolic Regression
S. Udrescu
Max Tegmark
158
872
0
27 May 2019
Differentiable Physics-informed Graph Networks
Differentiable Physics-informed Graph Networks
Sungyong Seo
Yan Liu
PINN
AI4CE
69
67
0
08 Feb 2019
Toward an AI Physicist for Unsupervised Learning
Toward an AI Physicist for Unsupervised Learning
Tailin Wu
Max Tegmark
DRL
AI4CE
SSL
OOD
52
69
0
24 Oct 2018
Discovering physical concepts with neural networks
Discovering physical concepts with neural networks
Raban Iten
Tony Metger
H. Wilming
L. D. Rio
R. Renner
PINN
AI4CE
51
390
0
26 Jul 2018
A high-bias, low-variance introduction to Machine Learning for
  physicists
A high-bias, low-variance introduction to Machine Learning for physicists
Pankaj Mehta
Marin Bukov
Ching-Hao Wang
A. G. Day
C. Richardson
Charles K. Fisher
D. Schwab
AI4CE
82
874
0
23 Mar 2018
1