Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.02890
Cited By
Rates of convergence for nonparametric estimation of singular distributions using generative adversarial networks
7 February 2022
Minwoo Chae
GAN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Rates of convergence for nonparametric estimation of singular distributions using generative adversarial networks"
23 / 23 papers shown
Title
Optimal transport map estimation in general function spaces
Vincent Divol
Jonathan Niles-Weed
Aram-Alexandre Pooladian
OT
80
24
0
07 Dec 2022
Estimating a density near an unknown manifold: a Bayesian nonparametric approach
Clément Berenfeld
Paul Rosa
Judith Rousseau
92
10
0
31 May 2022
Rates of Estimation of Optimal Transport Maps using Plug-in Estimators via Barycentric Projections
Nabarun Deb
Promit Ghosal
B. Sen
OT
105
75
0
04 Jul 2021
A likelihood approach to nonparametric estimation of a singular distribution using deep generative models
Minwoo Chae
Dongha Kim
Yongdai Kim
Lizhen Lin
74
17
0
09 May 2021
Measure estimation on manifolds: an optimal transport approach
Vincent Divol
OT
150
21
0
15 Feb 2021
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
Volkan Cevher
94
85
0
16 Jun 2020
Convergence of de Finetti's mixing measure in latent structure models for observed exchangeable sequences
Yun-Chun Wei
X. Nguyen
34
10
0
12 Apr 2020
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
64
395
0
23 Aug 2019
Smooth function approximation by deep neural networks with general activation functions
Ilsang Ohn
Yongdai Kim
50
80
0
17 Jun 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
619
10,595
0
12 Dec 2018
Lipschitz regularity of deep neural networks: analysis and efficient estimation
Kevin Scaman
Aladin Virmaux
88
531
0
28 May 2018
Universal approximations of invariant maps by neural networks
Dmitry Yarotsky
124
213
0
26 Apr 2018
Which Training Methods for GANs do actually Converge?
L. Mescheder
Andreas Geiger
Sebastian Nowozin
84
1,468
0
13 Jan 2018
Nonparametric regression using deep neural networks with ReLU activation function
Johannes Schmidt-Hieber
240
816
0
22 Aug 2017
Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance
Jonathan Niles-Weed
Francis R. Bach
213
421
0
01 Jul 2017
Non-Asymptotic Rates for Manifold, Tangent Space, and Curvature Estimation
Eddie Aamari
Clément Levrard
181
75
0
02 May 2017
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,564
0
31 Mar 2017
Towards Principled Methods for Training Generative Adversarial Networks
Martín Arjovsky
M. Nault
GAN
83
2,112
0
17 Jan 2017
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GAN
OOD
275
14,027
0
19 Nov 2015
Manifold estimation and singular deconvolution under Hausdorff loss
Christopher R. Genovese
M. Perone-Pacifico
I. Verdinelli
Larry A. Wasserman
UQCV
96
101
0
21 Sep 2011
Convergence of latent mixing measures in finite and infinite mixture models
X. Nguyen
120
185
0
15 Sep 2011
Latent Factor Models for Density Estimation
Suprateek Kundu
David B. Dunson
126
21
0
12 Aug 2011
Minimax Manifold Estimation
Christopher R. Genovese
M. Perone-Pacifico
I. Verdinelli
Larry A. Wasserman
130
128
0
04 Jul 2010
1