Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.02541
Cited By
v1
v2 (latest)
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
5 February 2022
Philipp Thölke
Gianni De Fabritiis
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials"
50 / 115 papers shown
Title
Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks
Haoyu Li
Shichang Zhang
Longwen Tang
Mathieu Bauchy
Yizhou Sun
AI4CE
79
1
0
08 Dec 2023
Sliced Denoising: A Physics-Informed Molecular Pre-Training Method
Yuyan Ni
Shikun Feng
Wei-Ying Ma
Zhiming Ma
Yanyan Lan
DiffM
AI4CE
82
11
0
03 Nov 2023
Investigating the Behavior of Diffusion Models for Accelerating Electronic Structure Calculations
D. Rothchild
Andrew S. Rosen
Eric Taw
Connie Robinson
Joseph E. Gonzalez
Aditi S. Krishnapriyan
DiffM
58
2
0
02 Nov 2023
Role of Structural and Conformational Diversity for Machine Learning Potentials
Nikhil Shenoy
Prudencio Tossou
Emmanuel Noutahi
Hadrien Mary
Dominique Beaini
Jiarui Ding
AI4CE
68
0
0
30 Oct 2023
Navigating protein landscapes with a machine-learned transferable coarse-grained model
N. Charron
Felix Musil
Andrea Guljas
Yaoyi Chen
Klara Bonneau
...
B. Husic
Ankit Patel
Gianni De Fabritiis
Frank Noé
C. Clementi
AI4CE
84
14
0
27 Oct 2023
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
84
37
0
25 Oct 2023
Learning Interatomic Potentials at Multiple Scales
Xiang Fu
Albert Musaelian
Anders Johansson
Tommi Jaakkola
Boris Kozinsky
81
2
0
20 Oct 2023
Towards equilibrium molecular conformation generation with GFlowNets
Alexandra Volokhova
Michal Koziarski
Alex Hernández-García
Cheng-Hao Liu
Santiago Miret
Pablo Lemos
Luca Thiede
Zichao Yan
Alán Aspuru-Guzik
Yoshua Bengio
73
11
0
20 Oct 2023
Equivariant Transformer is all you need
Akio Tomiya
Yuki Nagai
AI4CE
24
7
0
20 Oct 2023
ETDock: A Novel Equivariant Transformer for Protein-Ligand Docking
Yi Yi
Xu Wan
Yatao Bian
Ou-Yang Le
Peilin Zhao
44
3
0
12 Oct 2023
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
Peter K. Eastman
Raimondas Galvelis
Raúl P. Peláez
C. Abreu
Stephen E. Farr
...
Yuanqing Wang
Ivy Zhang
J. Chodera
Gianni De Fabritiis
T. Markland
AI4CE
VLM
86
53
0
04 Oct 2023
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations
Vaibhav Bihani
Utkarsh Pratiush
Sajid Mannan
Tao Du
Zhimin Chen
Santiago Miret
Matthieu Micoulaut
M. Smedskjaer
Sayan Ranu
N. M. A. Krishnan
59
19
0
03 Oct 2023
Navigating the Design Space of Equivariant Diffusion-Based Generative Models for De Novo 3D Molecule Generation
Tuan Le
Julian Cremer
Frank Noé
Djork-Arné Clevert
Kristof T. Schütt
DiffM
131
31
0
29 Sep 2023
From Peptides to Nanostructures: A Euclidean Transformer for Fast and Stable Machine Learned Force Fields
J. Frank
Oliver T. Unke
Klaus-Robert Muller
Stefan Chmiela
60
3
0
21 Sep 2023
Latent Representation and Simulation of Markov Processes via Time-Lagged Information Bottleneck
Marco Federici
Patrick Forré
Ryota Tomioka
Bastiaan S. Veeling
51
6
0
13 Sep 2023
3D Denoisers are Good 2D Teachers: Molecular Pretraining via Denoising and Cross-Modal Distillation
Sungjun Cho
Dae-Woong Jeong
Sung Moon Ko
Jinwoo Kim
Sehui Han
Seunghoon Hong
Honglak Lee
Moontae Lee
AI4CE
DiffM
61
1
0
08 Sep 2023
PolyGET: Accelerating Polymer Simulations by Accurate and Generalizable Forcefield with Equivariant Transformer
Rui Feng
Huan Tran
Aubrey Toland
Binghong Chen
Qi Zhu
R. Ramprasad
Chao Zhang
21
1
0
01 Sep 2023
May the Force be with You: Unified Force-Centric Pre-Training for 3D Molecular Conformations
Rui Feng
Qi Zhu
Huan Tran
Binghong Chen
Aubrey Toland
R. Ramprasad
Chao Zhang
AI4CE
66
11
0
24 Aug 2023
Crystal Structure Prediction by Joint Equivariant Diffusion
Rui Jiao
Wen-bing Huang
Peijia Lin
Jiaqi Han
Pin Chen
Yutong Lu
Yang Liu
DiffM
93
70
0
30 Jul 2023
Fractional Denoising for 3D Molecular Pre-training
Shi Feng
Yuyan Ni
Yanyan Lan
Zhiming Ma
Wei-Ying Ma
DiffM
AI4CE
106
29
0
20 Jul 2023
Multimodal Molecular Pretraining via Modality Blending
Qiying Yu
Yudi Zhang
Yuyan Ni
Shi Feng
Yanyan Lan
Hao Zhou
Jingjing Liu
70
13
0
12 Jul 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
124
159
0
21 Jun 2023
Top-down machine learning of coarse-grained protein force-fields
Carles Navarro
Maciej Majewski
Gianni De Fabritiis
AI4CE
83
12
0
20 Jun 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
81
24
0
15 Jun 2023
MUBen: Benchmarking the Uncertainty of Molecular Representation Models
Yinghao Li
Lingkai Kong
Yuanqi Du
Yue Yu
Yuchen Zhuang
Wenhao Mu
Chao Zhang
84
11
0
14 Jun 2023
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
Guillem Simeon
Gianni De Fabritiis
102
49
0
10 Jun 2023
Scaling Spherical CNNs
Carlos Esteves
Jean-Jacques E. Slotine
A. Makadia
GNN
LRM
70
14
0
08 Jun 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
151
15
0
02 Jun 2023
Smooth, exact rotational symmetrization for deep learning on point clouds
Sergey Pozdnyakov
Michele Ceriotti
3DPC
97
30
0
30 May 2023
Evaluation of the MACE Force Field Architecture: from Medicinal Chemistry to Materials Science
D. P. Kovács
Ilyes Batatia
E. Arany
Gábor Csányi
AI4CE
90
92
0
23 May 2023
Clifford Group Equivariant Neural Networks
David Ruhe
Johannes Brandstetter
Patrick Forré
83
42
0
18 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
112
63
0
28 Apr 2023
MUDiff: Unified Diffusion for Complete Molecule Generation
Chenqing Hua
Sitao Luan
Minkai Xu
Rex Ying
Jie Fu
Stefano Ermon
Doina Precup
DiffM
121
37
0
28 Apr 2023
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
87
57
0
20 Apr 2023
Dynamic Graph Representation Learning with Neural Networks: A Survey
Leshanshui Yang
Sébastien Adam
Clément Chatelain
AI4TS
AI4CE
78
17
0
12 Apr 2023
Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+
Shuqi Lu
Zhifeng Gao
Di He
Linfeng Zhang
Guolin Ke
72
28
0
16 Mar 2023
Wigner kernels: body-ordered equivariant machine learning without a basis
Filippo Bigi
Sergey Pozdnyakov
Michele Ceriotti
54
16
0
07 Mar 2023
Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials
Yuyang Wang
Chang Xu
Zijie Li
A. Farimani
AAML
AI4CE
82
22
0
03 Mar 2023
Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics
Andreas Krämer
Aleksander E. P. Durumeric
N. Charron
Yaoyi Chen
C. Clementi
Frank Noé
AI4CE
70
22
0
14 Feb 2023
Is Distance Matrix Enough for Geometric Deep Learning?
Zian Li
Xiyuan Wang
Yinan Huang
Muhan Zhang
73
19
0
11 Feb 2023
Attending to Graph Transformers
Luis Muller
Mikhail Galkin
Christopher Morris
Ladislav Rampášek
97
93
0
08 Feb 2023
GPS++: Reviving the Art of Message Passing for Molecular Property Prediction
Dominic Masters
Josef Dean
Kerstin Klaser
Zhiyi Li
Sam Maddrell-Mander
...
D. Beker
Andrew Fitzgibbon
Shenyang Huang
Ladislav Rampášek
Dominique Beaini
110
8
0
06 Feb 2023
Molecular Geometry-aware Transformer for accurate 3D Atomic System modeling
Zheng Yuan
Yaoyun Zhang
Chuanqi Tan
Wei Wang
Feiran Huang
Songfang Huang
AI4CE
ViT
56
6
0
02 Feb 2023
Spatial Attention Kinetic Networks with E(n)-Equivariance
Yuanqing Wang
J. Chodera
79
17
0
21 Jan 2023
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Maciej Majewski
Adriana Pérez
Philipp Thölke
Stefan Doerr
N. Charron
T. Giorgino
B. Husic
C. Clementi
Frank Noé
Gianni De Fabritiis
AI4CE
68
76
0
14 Dec 2022
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Alexandre Duval
Victor Schmidt
Santiago Miret
Yoshua Bengio
Alex Hernández-García
David Rolnick
77
7
0
22 Nov 2022
Learning the shape of protein micro-environments with a holographic convolutional neural network
Michael N. Pun
Andrew Ivanov
Quinn Bellamy
Zachary Montague
Colin H. LaMont
P. Bradley
J. Otwinowski
Armita Nourmohammad
49
12
0
05 Nov 2022
Geometry-Complete Perceptron Networks for 3D Molecular Graphs
Alex Morehead
Jianlin Cheng
GNN
3DV
AI4CE
53
12
0
04 Nov 2022
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
81
146
0
13 Oct 2022
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni De Fabritiis
T. Markland
117
112
0
21 Sep 2022
Previous
1
2
3
Next