Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.01958
Cited By
Demystify Optimization and Generalization of Over-parameterized PAC-Bayesian Learning
4 February 2022
Wei Huang
Chunrui Liu
Yilan Chen
Tianyu Liu
R. Xu
BDL
MLT
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Demystify Optimization and Generalization of Over-parameterized PAC-Bayesian Learning"
17 / 17 papers shown
Title
Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective
Wuyang Chen
Xinyu Gong
Zhangyang Wang
OOD
109
238
0
23 Feb 2021
PAC-Bayes Bounds for Meta-learning with Data-Dependent Prior
Tianyu Liu
Jie Lu
Zheng Yan
Guangquan Zhang
48
14
0
07 Feb 2021
A linearized framework and a new benchmark for model selection for fine-tuning
Aditya Deshpande
Alessandro Achille
Avinash Ravichandran
Hao Li
Luca Zancato
Charless C. Fowlkes
Rahul Bhotika
Stefano Soatto
Pietro Perona
ALM
162
48
0
29 Jan 2021
Zero-Cost Proxies for Lightweight NAS
Mohamed S. Abdelfattah
Abhinav Mehrotra
Łukasz Dudziak
Nicholas D. Lane
75
260
0
20 Jan 2021
A PAC-Bayesian Approach to Generalization Bounds for Graph Neural Networks
Renjie Liao
R. Urtasun
R. Zemel
71
90
0
14 Dec 2020
Bayesian Neural Architecture Search using A Training-Free Performance Metric
Andrés Camero
Hao Wang
Enrique Alba
Thomas Bäck
56
28
0
29 Jan 2020
Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
Jeffrey Negrea
Mahdi Haghifam
Gintare Karolina Dziugaite
Ashish Khisti
Daniel M. Roy
FedML
172
153
0
06 Nov 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
92
391
0
30 May 2019
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks
Gaël Letarte
Pascal Germain
Benjamin Guedj
Franccois Laviolette
MQ
AI4CE
UQCV
73
54
0
24 May 2019
A Primer on PAC-Bayesian Learning
Benjamin Guedj
161
223
0
16 Jan 2019
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
227
1,276
0
04 Oct 2018
Non-convex Optimization for Machine Learning
Prateek Jain
Purushottam Kar
163
486
0
21 Dec 2017
A PAC-Bayesian Analysis of Randomized Learning with Application to Stochastic Gradient Descent
Ben London
50
79
0
19 Sep 2017
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks
Behnam Neyshabur
Srinadh Bhojanapalli
Nathan Srebro
83
610
0
29 Jul 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
109
819
0
31 Mar 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
73
521
0
13 Feb 2017
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
226
1,517
0
08 Jun 2015
1