ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.01889
  4. Cited By
Generalizing to New Physical Systems via Context-Informed Dynamics Model
v1v2v3 (latest)

Generalizing to New Physical Systems via Context-Informed Dynamics Model

1 February 2022
Matthieu Kirchmeyer
Yuan Yin
Jérémie Donà
Nicolas Baskiotis
A. Rakotomamonjy
Patrick Gallinari
    OODAI4CE
ArXiv (abs)PDFHTMLGithub (24★)

Papers citing "Generalizing to New Physical Systems via Context-Informed Dynamics Model"

45 / 45 papers shown
Title
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Manuel Brenner
Elias Weber
G. Koppe
Daniel Durstewitz
AI4TSAI4CE
109
8
0
07 Oct 2024
Meta-Dynamical State Space Models for Integrative Neural Data Analysis
Meta-Dynamical State Space Models for Integrative Neural Data Analysis
Ayesha Vermani
Josue Nassar
Hyungju Jeon
Matthew Dowling
Il Memming Park
134
1
0
07 Oct 2024
Data-driven approaches for predicting spread of infectious diseases
  through DINNs: Disease Informed Neural Networks
Data-driven approaches for predicting spread of infectious diseases through DINNs: Disease Informed Neural Networks
Sagi Shaier
M. Raissi
P. Seshaiyer
PINNAI4CE
98
26
0
11 Oct 2021
Bridging Multi-Task Learning and Meta-Learning: Towards Efficient
  Training and Effective Adaptation
Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation
Haoxiang Wang
Han Zhao
Yue Liu
110
90
0
16 Jun 2021
LEADS: Learning Dynamical Systems that Generalize Across Environments
LEADS: Learning Dynamical Systems that Generalize Across Environments
Yuan Yin
Ibrahim Ayed
Emmanuel de Bézenac
Nicolas Baskiotis
Patrick Gallinari
OOD
73
34
0
08 Jun 2021
Generalizing to Unseen Domains: A Survey on Domain Generalization
Generalizing to Unseen Domains: A Survey on Domain Generalization
Jindong Wang
Cuiling Lan
Chang-Shu Liu
Yidong Ouyang
Tao Qin
Wang Lu
Yiqiang Chen
Wenjun Zeng
Philip S. Yu
OOD
257
1,235
0
02 Mar 2021
Meta-Learning Dynamics Forecasting Using Task Inference
Meta-Learning Dynamics Forecasting Using Task Inference
Rui Wang
Robin Walters
Rose Yu
OODAI4TSAI4CE
138
35
0
20 Feb 2021
Machine learning accelerated computational fluid dynamics
Machine learning accelerated computational fluid dynamics
Dmitrii Kochkov
Jamie A. Smith
Ayya Alieva
Qing Wang
M. Brenner
Stephan Hoyer
AI4CE
143
876
0
28 Jan 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
516
2,456
0
18 Oct 2020
Augmenting Physical Models with Deep Networks for Complex Dynamics
  Forecasting
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Yuan Yin
Vincent Le Guen
Jérémie Donà
Emmanuel de Bézenac
Ibrahim Ayed
Nicolas Thome
Patrick Gallinari
AI4CEPINN
105
135
0
09 Oct 2020
Deep learning-based reduced order models in cardiac electrophysiology
Deep learning-based reduced order models in cardiac electrophysiology
S. Fresca
Andrea Manzoni
Luca Dede'
A. Quarteroni
57
67
0
02 Jun 2020
Context-aware Dynamics Model for Generalization in Model-Based
  Reinforcement Learning
Context-aware Dynamics Model for Generalization in Model-Based Reinforcement Learning
Kimin Lee
Younggyo Seo
Seunghyun Lee
Honglak Lee
Jinwoo Shin
101
133
0
14 May 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
328
944
0
02 Mar 2020
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
209
225
0
29 Sep 2019
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
315
647
0
19 Sep 2019
Modular Meta-Learning with Shrinkage
Modular Meta-Learning with Shrinkage
Yutian Chen
A. Friesen
Feryal M. P. Behbahani
Arnaud Doucet
David Budden
Matthew W. Hoffman
Nando de Freitas
KELMOffRL
112
35
0
12 Sep 2019
Meta-Learning with Warped Gradient Descent
Meta-Learning with Warped Gradient Descent
Sebastian Flennerhag
Andrei A. Rusu
Razvan Pascanu
Francesco Visin
Hujun Yin
R. Hadsell
100
210
0
30 Aug 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
205
2,246
0
05 Jul 2019
Fast and Flexible Multi-Task Classification Using Conditional Neural
  Adaptive Processes
Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes
James Requeima
Jonathan Gordon
J. Bronskill
Sebastian Nowozin
Richard Turner
76
243
0
18 Jun 2019
Hamiltonian Neural Networks
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINNAI4CE
135
899
0
04 Jun 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed
  Optimization
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
99
322
0
31 May 2019
Meta-Learning with Differentiable Convex Optimization
Meta-Learning with Differentiable Convex Optimization
Kwonjoon Lee
Subhransu Maji
Avinash Ravichandran
Stefano Soatto
98
1,269
0
07 Apr 2019
Attentive Neural Processes
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
106
442
0
17 Jan 2019
DeepSDF: Learning Continuous Signed Distance Functions for Shape
  Representation
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation
Jeong Joon Park
Peter R. Florence
Julian Straub
Richard Newcombe
S. Lovegrove
3DV
141
3,709
0
16 Jan 2019
Gradient Descent Happens in a Tiny Subspace
Gradient Descent Happens in a Tiny Subspace
Guy Gur-Ari
Daniel A. Roberts
Ethan Dyer
103
234
0
12 Dec 2018
How to train your MAML
How to train your MAML
Antreas Antoniou
Harrison Edwards
Amos Storkey
74
778
0
22 Oct 2018
Meta-Learning with Latent Embedding Optimization
Meta-Learning with Latent Embedding Optimization
Andrei A. Rusu
Dushyant Rao
Jakub Sygnowski
Oriol Vinyals
Razvan Pascanu
Simon Osindero
R. Hadsell
150
1,374
0
16 Jul 2018
Conditional Neural Processes
Conditional Neural Processes
M. Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
D. Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
UQCVBDL
90
706
0
04 Jul 2018
Meta-learning with differentiable closed-form solvers
Meta-learning with differentiable closed-form solvers
Luca Bertinetto
João F. Henriques
Philip Torr
Andrea Vedaldi
ODL
102
931
0
21 May 2018
Measuring the Intrinsic Dimension of Objective Landscapes
Measuring the Intrinsic Dimension of Objective Landscapes
Chunyuan Li
Heerad Farkhoor
Rosanne Liu
J. Yosinski
91
416
0
24 Apr 2018
Learning to Adapt in Dynamic, Real-World Environments Through
  Meta-Reinforcement Learning
Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning
Anusha Nagabandi
I. Clavera
Simin Liu
R. Fearing
Pieter Abbeel
Sergey Levine
Chelsea Finn
142
553
0
30 Mar 2018
Efficient parametrization of multi-domain deep neural networks
Efficient parametrization of multi-domain deep neural networks
Sylvestre-Alvise Rebuffi
Hakan Bilen
Andrea Vedaldi
OOD
86
366
0
27 Mar 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
293
3,489
0
09 Mar 2018
Visualizing the Loss Landscape of Neural Nets
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
268
1,901
0
28 Dec 2017
Deep Learning for Physical Processes: Incorporating Prior Scientific
  Knowledge
Deep Learning for Physical Processes: Incorporating Prior Scientific Knowledge
Emmanuel de Bézenac
Arthur Pajot
Patrick Gallinari
PINNAI4CE
118
319
0
21 Nov 2017
PDE-Net: Learning PDEs from Data
PDE-Net: Learning PDEs from Data
Zichao Long
Yiping Lu
Xianzhong Ma
Bin Dong
DiffMAI4CE
75
761
0
26 Oct 2017
FiLM: Visual Reasoning with a General Conditioning Layer
FiLM: Visual Reasoning with a General Conditioning Layer
Ethan Perez
Florian Strub
H. D. Vries
Vincent Dumoulin
Aaron Courville
FAttAIMatOffRLAI4CE
375
2,239
0
22 Sep 2017
DGM: A deep learning algorithm for solving partial differential
  equations
DGM: A deep learning algorithm for solving partial differential equations
Justin A. Sirignano
K. Spiliopoulos
AI4CE
101
2,067
0
24 Aug 2017
Meta-SGD: Learning to Learn Quickly for Few-Shot Learning
Meta-SGD: Learning to Learn Quickly for Few-Shot Learning
Zhenguo Li
Fengwei Zhou
Fei Chen
Hang Li
101
1,121
0
31 Jul 2017
An Overview of Multi-Task Learning in Deep Neural Networks
An Overview of Multi-Task Learning in Deep Neural Networks
Sebastian Ruder
CVBM
161
2,833
0
15 Jun 2017
Learning multiple visual domains with residual adapters
Learning multiple visual domains with residual adapters
Sylvestre-Alvise Rebuffi
Hakan Bilen
Andrea Vedaldi
OOD
187
940
0
22 May 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
843
11,961
0
09 Mar 2017
Professor Forcing: A New Algorithm for Training Recurrent Networks
Professor Forcing: A New Algorithm for Training Recurrent Networks
Alex Lamb
Anirudh Goyal
Ying Zhang
Saizheng Zhang
Aaron Courville
Yoshua Bengio
GAN
124
597
0
27 Oct 2016
HyperNetworks
HyperNetworks
David R Ha
Andrew M. Dai
Quoc V. Le
174
1,633
0
27 Sep 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
1